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Abstract

UNIVERSITY OF SOUTHAMPTON

FACULTY OF SCIENCE

CHEMISTRY

Doctor of Philosophy

THE USE

OF FREE ENERGY SIMULATIONS

AS SCORING FUNCTIONS

by Julien Michel

The combination of theories of implicit solvation, derived from the laws of classi-

cal electrostatics, with theories of free energy calculation, derived from the principles of

statistical thermodynamics, is investigated. The aim of the investigation is to develop an

efficient protocol for the prediction of the binding free energy of protein-ligand complexes.

The Generalised Born Surface Area (GBSA) theory of implicit solvation and the Replica

Exchange Thermodynamic Integration (RETI) method were selected for this work. A set

of optimum parameters were derived for a GBSA force field, compatible with the Gen-

eral Amber Force Field (GAFF). The resulting implicit models of water were validated by

assessing their ability to reproduce the salient features of the potentials of mean force for

the association of several small molecules in solution. A protocol that combines efficiently

GBSA potential energy function evaluation with Monte Carlo sampling was devised and

validated by calculating the relative binding free energy of selected protein-ligand com-

plexes. The implicit solvent free energy calculation protocol was then applied to determine

the relative binding free energies of a set of congeneric inhibitors to two different proteins,

cyclooxygenase-2 and neuraminidase. The method was found to perform as well or better

than established binding free energy calculation protocols, while converging free energy

estimates faster. Established protocols can typically only calculate relative free energies

between structurally similar compounds. A methodology was devised to permit the calcu-

lation of the relative free energy of structurally different compounds. The method extends

thus the scope of free energy calculations. It is expected that the combination of the two

methodologies will allow free energy calculations to be applied to a wider variety of prob-

lems, of direct relevance to the pharmaceutical industry.



“I stand at the seashore, alone, and start to think. There are the

rushing waves ... mountains of molecules, each stupidly minding its

own business ... trillions apart ... yet forming white surf in unison.

Ages on ages ... before any eyes could see ... year after year ...

thunderously pounding the shore as now. For whom, for what ? ... on

a dead planet, with no life to entertain.

Never at rest ... tortured by energy ... wasted prodigiously by the

sun ... poured into space. A mite makes the sea roar.

Deep in the sea, all molecules repeat the patterns of one another

till complex new ones are formed. They make others like themselves

... and a new dance starts.

Growing in size and complexity ... living things, masses of atoms,

DNA, protein ... dancing a pattern ever more intricate.

Out of the cradle onto the dry land ... here it is standing ... atoms

with consciousness ... matter with curiosity.

Stands at the sea ... wonders at wondering ... I ... a universe of

atoms ... an atom in the universe. ”

Richard P. Feynman
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Chapter 1

Computer aided drug design

“Every attempt to employ mathematical methods in the study of

chemical questions must be considered profoundly irrational and con-

trary to the spirit of chemistry.... if mathematical analysis should ever

hold a prominent place in chemistry – an aberration which is happily

almost impossible – it would occasion a rapid and widespread degen-

eration of that science.”

Auguste Comte

1.1 Introduction

This work aims at developing novel computer methodologies that allow for the

reliable and accurate calculation of the relative affinities of a range of ligands to

a protein. Even with modern computational resources, present day techniques are

time consuming and limited in scope. The general availability of a fast, reliable,

and accurate computational method to predict binding free energies would be of

significant assistance to the pharmaceutical industry.
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1.2 Docking and scoring in structure based drug de-

sign

Modern drug discovery makes regular use of computational methodologies to as-

sist in the development of new drugs.1

Invaluable insights can be obtained from the analysis of the crystallographic or

NMR-derived structures that describe the interactions between a small molecule

inhibiting an important enzyme. The wealth of information thus obtained is used

to direct the efforts of synthetic chemists towards the design of better drugs, more

quickly.2–5 It is unfortunate that obtaining a well resolved X-ray structure of a

protein-ligand complex often represents a significant effort, even with the advent

of tools that can help to automate such undertaking.3,6, 7 Furthermore, one would

ideally like to be able to inspect how thousands of different small molecules could

bind to a particular target. The docking methodology has been developed to ad-

dress such issue. Given the three dimensional structure of the binding site of a

particular target, is it possible to use a computational method to predict the orien-

tation a small molecule would adopt inside ?

Because of the potential rewards, extensive research has been conducted in this

area over the last two decades8–11 and several methodologies to solve such problem

have been proposed.12–17 A good docking algorithm must possess two essential in-

gredients to be successful. First, it must be equipped with a good search strategy.

Drug-like molecules often contain several rotatable bonds and in order to deter-

mine the optimum configuration the ligand should adopt when bound to a protein,

all of the most likely configurations must be enumerated quickly. The problem

is further complicated if the flexibility of the protein is to be considered. Often,

docking algorithms do not consider protein flexibility because it increases hugely

the search space and does not permit the consideration of several thousands lig-

ands within a reasonable amount of time and computational resource. Because the

search strategy amounts to an optimisation problem, a wide variety of techniques,

often borrowed from operational research, are employed by different docking pro-

grams.

To analyse the configurations generated by the search strategy, it is necessary
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to rank the proposed configurations according to their plausibility. To achieve this

aim, scoring functions are used to evaluate a score which typically depends on a

range of physical descriptors and energetic terms that describe the main features

of protein-ligand binding.11,18 A wide variety of scoring functions exists in the

literature.19–26 Typical scoring functions can be classified in three main categories:

empirical, knowledge-based and physical (based on a molecular mechanics force

field) scoring functions. An example of each of those is given below.

. The GOLD scoring function21 consists of three terms, a hydrogen bonding

term, a van der Waals term, and an internal energy term. The van der Waals

interaction energy uses a 4-8 Lennard-Jones potential. The hydrogen bond-

ing term is based on empirical values for the strength of hydrogen bonds

between different atom types. The hydrogen bond energy is weighted based

on the angle and the bond length between the donor and acceptor. The van

der Waals term account for hydrophobic interactions between the ligand and

the protein. The internal energy term consider the energy necessary for the

ligand to adopt its configuration in the binding site, which may differ from

the one it would adopt freely in solution. The total energy is a weighted sum

of the three terms, making this a semi-empirical scoring function.

. Knowledge-based potentials are derived using observed frequencies of atom-

atom interactions in known structures of protein-ligand complexes. If these

frequencies are converted into free energies using Boltzmann distributions,

the potentials are generally called potentials of mean force (PMF). The main

difference with empirical potentials is that no binding data are needed, which

has the advantage that relatively large training sets can be easily devised.

Another advantage is that PMF based scoring functions include implicitly,

in principle, all the forces that play a role in complex formation. A disad-

vantage is that rather large and well balanced datasets may be necessary to

reflect the diversity of protein binding sites and ligand functional groups. An

example of a PMF scoring function is DrugScore.24

. Some earlier scoring functions use force fields derived from the field of

molecular simulations. The AutoDOCK scoring function uses the Coulomb
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and van derWaals terms of force field functions.13 To account for the screen-

ing effect of the solvent on electrostatic interactions, a distance-dependent

dielectric constant is used. Internal ligand energies and entropic terms are

completely ignored.

While a rigorous comparison of different docking program is often difficult,27

it is generally accepted that modern docking methods obtain successfully the cor-

rect binding mode of a ligand about 70% of the time, making docking a valuable

tool in the search for new inhibitors of a protein.

Given a cheap computational method that finds the right orientation of a small

molecule in the binding site of a protein, it is possible to generate rapidly thou-

sands of dockings. The typical scoring functions discussed above seem able to

discriminate reasonably between compounds that would bind very poorly or not at

all and those that would bind.18 Unfortunately, most of these methods fall short of

expectations when one tries to order a series of known binders according to their

potency.28 It is perhaps not surprising when one realises that to correctly deter-

mine the binding mode of a small molecule, one usually needs to satisfy a set of

hydrogen bonds constraints and hydrophobic contacts. The correct evaluation of

a binding free energy is however, much more sensitive to the underlying poten-

tial energy surface and the proper consideration of solvation and entropic effects,

which are precisely what most common scoring functions lack. If a cheap compu-

tational method that could robustly predict the binding energy of a series of related

inhibitors existed, it would become possible to perform lead optimisation in silico.

Such an ability would reduce the time and effort necessary to produce a new drug

by cutting down the number of compounds that have to be synthetised and tested

for activity in a laboratory.

Much is known about the physical principles of ligand-protein interactions and

there exists a formalism to calculate binding free energies from first principles.

The purpose of the remainder of this chapter will be to introduce the necessary

background to understand free energy calculations and discuss how they can be

applied in practice to drug design.
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1.3 Key notions of statistical mechanics

1.3.1 A brief definition

The science of thermodynamics arose from the realisation that material systems

could be described in terms of a small number of parameters that were related to

each other by simple laws. For instance a simplified form of the ideal gas law that

relates the product of the pressure and volume of a gas to its temperature was pro-

posed by Boyle as early as 1661.1 In fact, the bulk of modern thermodynamics was

developed without ever having to conjure the atomistic picture of matter to mind.

However, in the nineteenth century, a number of physicists were growing uneasy

with the empirical foundations of thermodynamic. Gibbs wrote in the introduction

to his book Elementary principles in statistical mechanics.29

“The laws of thermodynamics, as empirically determined, express

the approximate and probable behavior of systems of a great number

of particles, or, more precisely, they express the laws of mechanics

for such systems as they appear to beings who have not the fineness of

perception to enable them to appreciate quantities of the order of mag-

nitude of those which relate to single particles, and who cannot repeat

their experiments often enough to obtain any but the most probable

results.”

Thus statistical mechanics can be thought of as a branch of physics which tries

to explain the laws of thermodynamics from the mechanical properties of collec-

tions of molecules. Because it relies on a probabilistic picture the term statistical

is adequate. Much of the early developments in statistical mechanics are due to

Clausius, Maxwell and Boltzmann.

1.3.2 Concepts and postulates of statistical mechanics

Statistical Mechanics take the view that the macroscopic properties ( i.e, observ-

ables such as volume, compressibility...) of a system arise naturally from the mi-

1It appears the law was formulated in reply to criticisms from the Jesuit Franciscus Linus to
the work of Boyle and Hooke (inventor of the microscope), published in 1660 under the title New
Experiments Physico-Mechanical. The law, which was formulated as an hypothesis then (even
though it was backed up by several experiments), was included in the second edition of this book
and published in 1662.
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croscopic (i.e atomistic) behaviour of that system. We now consider that the sys-

tem of interest is a collection of N particles in a box. At any instant, each particle

has a given momentum and occupies a point in space. The set of positions pN

and momenta rN of each of the N particles defines uniquely a point Γ = (pN ,rN)

in a 6N dimensional space called phase space. Under a given set of conditions

(for example, constant volume of the box and constant temperature), the collec-

tion of particles naturally adopt different set of positions/momenta through time

and equivalently, follows a time trajectory in phase space. Instead of focusing on

the time evolution of a trajectory in phase space, it is possible to imagine that the

collection of microstates the system can adopt naturally forms an ensemble. In

equilibrium, the microstates in that ensemble are distributed according to a proba-

bility density π(Γ). The two important postulates of statistical mechanics can now

be formulated.29

1. Postulate of equal a priori probabilities: This postulate states that two mi-

crostates i,j that have the same energy are equally probable and therefore

πi = π j.

2. Postulate of ergodicity: This postulate states that the time evolution of a

trajectory in phase space is such that one is guaranteed to visit eventually

all the states which have a non-zero probability of existence. This postulate

means that the time average of a property equals the ensemble average of

that property at equilibrium.

1.3.3 The Boltzmann distribution

Under these conditions, it is possible to derive an expression for the probability

density π for a particular ensemble. In the rest of this section we will focus on

the canonical ensemble where N, the number of particles, V, the volume and T,

the temperature of the system are held constant. Similar derivations leading to

different expressions can be obtained for different ensembles.

The probability distribution for the NVT ensemble is30

πNVT (i) =
1

Q(NVT )
exp(−βEi) (1.1)
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Ei is the energy of state i, β is equal to 1
kT

where T is the temperature and k

the Boltzmann constant. The exponential term is known as the Boltzmann factor

and represent the weight of the state in that ensemble. QNVT is a normalisation

constant called the partition function. πNVT is often referred to as the Boltzmann

distribution.When dealing with systems with a finite number of states, the partition

function QNVT is simply the sum of the Boltzmann factor of each state, i.e

QNVT = ∑
i

exp(−βEi) (1.2)

In the limit of very large number of states, equation 1.2 can be replaced by an

integral and it is then more appropriate to consider the phase space Γ = (pN ,rN)

as a continuum and write under the conditions of the classical approximation30

QNVT =
1

N!

1

h3N

Z Z

dpNdrN exp(−βE(pN ,rN)) (1.3)

The term in 1
N!

is necessary when dealing with indistinguishable particles

as in this case two configurations that differs only by the exchange of coordi-

nates/momenta between two particles correspond to only one real configuration.

This term must be adjusted if the system is a mixture of different particles. The

other term involves the Planck constant h and is of quantum mechanical origin. In

the rest of this document we will occasionally define Q using either equation 1.2

or 1.3. We assume that any future conclusions drawn from Q applies to either form

unless otherwise noted.

The connection between a macroscopic observable Aobs and its microscopic

value A(Γ) can be made through the following relationship:

Aobs = 〈Aens〉=
1

QNVT

Z Z

dpNdrNA(pN ,rN)exp(−βE(pN ,rN)) (1.4)

Equation 1.4 states that the ensemble average 〈Aens〉 is equal to the macro-

scopic observable Aobs. Note how this ensemble average is calculated by integrat-

ing over all the positions and momenta that the set of N particles can adopt.

The partition function in equation 1.3 is often used in a simplified form. The

Energy E(pN ,rN) can be separated into a kinetic part K(pN) and a potential part
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U(rN). The kinetic part is also called the ideal part because a system where the

only energy term is of kinetic origin would be an ideal gas. The potential part is

called the excess part by reference to thermodynamics where deviations from an

ideal system are attributed to ’excess’ terms.

QNVT =
1

N!

1

h3N

Z Z

exp

(

−β(U(rN)+K(pN))

)

dpN drN

=
1

N!

1

h3N

Z Z

exp

(

−βU(rN)

)

exp

(

−βK(pN)

)

dpN drN

=
1

N!

1

h3N

Z

exp

(

−βK(pN)

)

dpN
Z

exp

(

−βU(rN)

)

drN

= QNVTid.QNVTexcess

(1.5)

The ideal part can be evaluated analytically.

QNVTid =
VN

N!Λ3N
where Λ = (h2/2πmkBT )

1
2 , (1.6)

where Λ is the thermal de Broglie wavelength , m the mass of each particle and V

the volume of the system.

QNVTexcess is often written as:

QNVTexcess =
1

N!

1

h3N
ZN,NVT (1.7)

where ZN,NVT is the configurational integral. When dealing with the excess part it

is common to drop out the first two terms and focus on the configurational integral.

With the following simplifications, when one is interested in the ensemble average

of a property that depends only on the coordinates, the momentum contributions

in equation 1.4 can be safely ignored and the calculation of 〈Aens〉 simplifies to:

〈Aens〉=

R

drNA(rN)exp(−βU(rN))

ZN,NVT
(1.8)

Equation 1.8 shows that the ensemble average of a property A is the ratio of

two integrals over a space of rN dimensions. Since, under the postulates of sta-

tistical mechanics, this ensemble average is taken to be equal to the macroscopic
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(thermodynamic) value of A, this equation provides us with a mean to derive ther-

modynamic properties ab initio.

1.4 Classical potentials

Central to the evaluation of any thermodynamic property A is the potential energy

function U(rn) present in equation 1.8. The best available potentials belong un-

doubtedly to the realm of quantum mechanics.31 Unfortunately, with present day

computer technology they are impractical for the routine simulation of biomolec-

ular systems. Heroic first principle simulations of liquid water have appeared in

the literature,32 but it is likely that quantum chemistry will not be the method of

choice for simulations of large systems before a long time. Instead, so called clas-

sical force fields are often used to model the interactions between atoms. These

methods relies on simple functional forms and sets of parameters empirically ad-

justed to reproduce the experimental or quantum chemical properties of molecules.

There are many force fields that may be used to represent biomolecules, for exam-

ple OPLS,33 AMBER,34 MM335 and CHARMM22.36 Most of these force fields

share similar functional forms and differ in their empirical parameters and the

means used to derive them.

The functional form of the total potential energy, Utotal , in the AMBER force

field is as follows:

Utotal =Ubond +Uangle +Udihedral +Unon−bonded. (1.9)

The bond and angle contributions are described by harmonic potentials and ac-

count for all the interactions between directly bonded (1-2) or directly angled (1-3)

atoms:

Ubond = ∑
bonds

Kb(r− req)
2 (1.10)

Uangle = ∑
angles

Kθ(θ−θeq)
2 (1.11)

where r corresponds to the bond length, θ to the valence angle, and req and θeq to

the associated equilibrium values. Kb and Kθ are force constants.
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The torsional term is used to model interactions between pairs of (1-4) atoms

and is computed as:

Udihedral = ∑
dihedrals

An(1+ cos(nφ−δ)), (1.12)

where φ is the dihedral angle, n is the multiplicity (which gives the number of

minimum points in the function as the torsion angle changes from 0 to 2π), δ is

the phase angle and An is the force constant.

Finally, the non-bonded energy is composed of an electrostatic and a Lennard-

Jones term:

Unon−bonded = ∑
i

∑
j>i

{

qiq j

4πε0ri j
+4εi j

[

(

σi j

ri j

)12

−

(

σi j

ri j

)6
]}

, (1.13)

where the sum is over all atom pairs i, j. The qi are the partial atomic charges,

εi j and σi j are the Lennard-Jones well-depth energy and collision-diameter pa-

rameters, ε0 is the permittivity of free space and ri j is the inter-atomic distance.

The non-bonded term is also applied to 1-4 atoms, but the magnitude of the in-

teractions is reduced by adopting a scaling factor. For the AMBER all atom force

field the coulombic interactions between 1-4 atoms are scaled by 0.833 and the

Lennard-Jones interactions by 0.5.

The total energy of the system is taken as the sum over all inter- and intramolec-

ular terms. Because the evaluation of the energy between all pairs of atoms can be

time consuming in large system, the intermolecular terms are normally truncated

such that interactions between atoms separated by more than a cut-off distance are

ignored.37,38 This cutoff may be applied between pairs of atoms, or it may be based

on the distance between pairs of groups, e.g. if the closest distance between two

residues of molecules is greater than the cutoff distance, then all of the pair-pair

interactions between the two groups are ignored.38 This truncation of the non-

bonded terms can lead to discontinuities in the potential energies and forces as-

sociated with the interaction.38 To overcome this problem, the non-bonded terms,

Enb(r), may be scaled by multiplying by a switching function, S(r),38
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Enb′(r) = S(r)×Enb(r), (1.14)

where r is the distance between atoms. The aim of the switching function is to

preserve the nature of the non-bonded interaction at low r, while gradually smooth-

ing the energy to zero by the cutoff distance. This switching function may be ap-

plied over the entire range of distances, or only for a short range of distances before

the cutoff,38

Enb′(r) = Enb(r) for r < r f eather

Enb′(r) = S(r)×Enb(r) for r f eather ≤ r ≤ rcut

Enb′(r) = 0 for r > rcut ,

(1.15)

where rcut is the cutoff distance, and r f eather is the distance beyond which the

switching function feathers the non-bonded interactions to zero.

When using group-based cutoffs, it is important to ensure that the switch-

ing function has the same value for each pair of atoms between the interacting

groups.38 This may be achieved by calculating a single value of the switching

function for the interacting groups, and multiplying it by the total non-bonded in-

teraction energy between the groups.

1.5 Sampling methods

Once a potential U deemed sufficiently accurate to reproduce closely the ther-

modynamic properties of interest is available, there remains the need to adopt a

method to generate an ensemble of configurations that will be employed to esti-

mate the configurational integral 1.8.

1.5.1 Metropolis Monte Carlo

The Metropolis Monte Carlo method was developed in 1953.39 Behind its appar-

ent simplicity lies many advanced mathematical concepts, and the curious reader,

desirous of understanding why the Metropolis method really works is referred to

appendix A. The algorithm is listed below.
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1. Start in state i

2. Attempt a move to state j with probability pi j

3. Accept this move with probability αi j = min(1,χ) where χ = (π j/πi)

4. If the move is accepted set i = j, otherwise i = i

5. Accumulate any property of interest A(i)

6. Return to 1 or terminate after a number of iterations

An important property that the algorithm must obey is the principle of detailed

balance or microscopic reversibility (see appendix A).

πipi j = π jp ji (1.16)

Let Qi j be the probability that the move i to j is accepted and assume π j < πi.

πiQi j = π jQ ji

πipi jαi j = π jp jiα ji

πipi j
π j

πi
= π jp ji

pi j = p ji

(1.17)

And we see that detailed balance is respected if the unmodified transition ma-

trix is symmetric i.e, the probability of moving from i to j, before weighting by πi

and π j is the same as the probability of moving from j to i.

Suppose we want to use Metropolis Sampling to sample from the Boltzmann

distribution, then the acceptance test will be

π j,NVT

πi,NVT
=
exp(−βU j)/ZN,NVT

exp(−βUi)/ZN,NVT

= exp(−β(U j−Ui))

(1.18)

and it follows that we do not need to know the normalisation factor ZN,NVT

which is fortunate as it is usually not possible to determine this parameter.
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In a computer simulation, the ratio of the Boltzmann factor of states i and j is

calculated and compared to a random number u drawn uniformly between [0,1]. If

u < (π j,NVT/πi,NVT ) the move is accepted.

1.5.2 Monte Carlo moves

Standard Monte Carlo moves

Metropolis sampling often relies on the assumption of detailed balance. Perhaps

the simplest way to require that the transition matrix probabilities pi j and p ji are

equal is to select a trial state j randomly. Because the vast majority of the pos-

sible configurations of a molecular system have very high energies, and we have

no a priori knowledge of the interesting regions of phase space, the trial state j

is formed by performing a small alteration to state i, the reasoning being that if

state i is a member of the ensemble π, then a state j that is similar to state i has a

reasonable probability to be part of that ensemble as well. In practice this is often

done by picking randomly one particle in the system and performing a random

translational/rotational displacement of that particle. If the particle has any inter-

nal degrees of freedom, then these degrees of freedom can be randomly modified

as well. The magnitude of these modifications is often adjusted according to the

moved particle and a rule of thumb is that the overall acceptance rate should be set

to about 40 %. An important caveat is that alterations to the maximum range of

the displacements should not be made while statistics are collected as this would

violate detailed balance.

Biased moves

When applying the basic Metropolis method, we are often faced with situations

where the probability of making a transition to an interesting state (π j > πi) is

small. We accept the generated state with a probability αi j = min(1,χ). Because

in this situation χ would be less than 1, the overall probability Qi j is equal to pi j

which can be quite small. In that case, if a method to detect interesting transitions

i to j can be formulated, it would be advantageous to introduce some bias to favour

the transition but this usually means that the transition matrix will no longer be
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symmetric ( pi j 6= p ji).

Observe that a general solution to enforce detailed balance within the Metropo-

lis algorithm is to set

αi j = min(1,χ)

α ji = min(1,
1

χ
)

χ =
π jp ji

πipi j

(1.19)

In this case, the probabilities pi j and p ji enter in the acceptance test and have

to be determined, but note it is now necessary to determine the bias on the reverse

move in order to be able to perform the acceptance test. With some moves, it can

be difficult to determine the probability of the reverse move and the introduction

of bias in a Metropolis Monte Carlo scheme has to be made carefully.

As an illustration, consider the case of preferential sampling.40 In this type of

move, solvent molecules that are close to a solute of interest are moved more often

than solvent molecules further apart. The probability that a solvent molecule i is

picked is based on Wi =
1

rkis
where ris is the distance between the molecule i and

the solute s and k is a parameter. The parameter W is normalized for every solvent

molecule.

W
′

i =
Wi

∑N
j=1Wj

(1.20)

A solvent molecule is then selected randomly from the N solvent molecules

according to its weight W and displaced by a random amount. Detailed balance

must be satisfied by the following relation:

πi
1

N
W

′

imin(1,χ) = π j
1

N
W

′

jmin(1,
1

χ
) (1.21)

which is solved for

χ =
π jW

′

j

πiW
′

i

(1.22)
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The weightW
′

j is not known when the move was initiated, but it is readily avail-

able once the solvent molecule has been displaced and the new distance r js can be

calculated. Other examples of biased moves encountered in molecular simulations

are cavity biased insertion of molecules (for simulations in the grand canonical

ensemble),41 force biased moves42 or configurational biased moves.43

Generalised ensembles

As mentioned previously, the potential energy surface of chemical systems of in-

terest is often found to be very frustrated, with many minima and barriers that pose

a challenge to standard sampling methods. The biased moves described in the pre-

vious section can be very effective to solve a sampling problem, but they can typ-

ically be applied only to specific systems. The method of Parallel Tempering44–46

takes a different approach and increases sampling of the entire system by forming

a generalised ensemble over temperature.44 The method works by running a set of

simulations of a given system at different temperatures. The individual simulations

are also called replicas and the method is referred to as Replica Exchange. Period-

ically, Parallel Tempering moves are attempted between different replicas. If the

move is accepted, the replicas exchange their temperature and the simulations pro-

ceed normally until the next attempted move. The Parallel Tempering acceptance

test is designed such that each simulation is forming a correct NVT or NPT en-

semble. For instance, in a NVT simulation a replica i at inverse temperature βA

should exchange with replica j at inverse temperature βB with probability

exp

[(

βB−βA

)

(

EB( j)−EA(i)
)

]

≥ rand(0,1), (1.23)

With Parallel Tempering, a low temperature configuration can be taken into

a high temperature simulation, undergo a large configurational change and then

’cool down’ back to its original temperature, in which case enhanced configura-

tional sampling has been achieved. A difficulty with this method is that two differ-

ent replicas must be simultaneously exchanged and the high temperature replica

is less likely to be a representative member of the low temperature ensemble. It

is therefore necessary to keep a small temperature interval between two different
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replicas. Another drawback is the necessity to run several simulations at high tem-

perature when only one ensemble at room temperature may be of practical interest.

1.5.3 Molecular dynamics

Another commonly used method to generate ensemble of thermally relevant states

is Molecular Dynamics (MD).37 In MD simulations, the time evolution of a system

of a N atoms placed in a starting configuration is monitored. The forces acting on

that system can be calculated with the knowledge of its potential energy function

and Newton’s laws of motion. Because of the deterministic nature of Newton’s

laws, this information is sufficient to generate a trajectory of the simulated system

over time. Analytical solutions are not practical as they would requires the solution

of 3N coupled, second order differential equations. Fortunately, many numerical

approaches permit the repeated integration of the forces over small time intervals

to yield a trajectory. Because the total energy of the system is conserved by the

application of Newton’s laws, MD simulations naturally form the NVE ensemble.

Algorithms that connect the system to a thermostat or barostat allow the sampling

of the NVT or NPT ensemble. Because of the postulate of ergodicity, the ensemble

of states visited in a MD simulation should be identical to those generated by a MC

simulation (in the limit of sufficiently long simulations).

While both approaches should give the same answer, in practice one method

may outperform the other on a particular system. MC is algorithmically simpler to

implement than MD, particularly for simulations in the NPT ensemble. Because

MD follows the time evolution of a system, dynamical properties can be stud-

ied, which is not feasible in typical MC simulations although the Kinetic Monte

Carlo method can partially overcome this difficulty.47 In a MD simulation, all the

degrees of freedom of the system are subject to forces and hence move. It is of-

ten necessary to constrain many degrees of freedom using algorithms such as the

SHAKE method.48 In a MC simulation, no degree of freedom is sampled unless

it has been chosen and the implementation of constraints is therefore trivial. In

principle, MC is not required to climb an energy barrier to sample two connected

minima although it can be difficult to design a move that efficiently explores unre-

lated minima.
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1.6 Rigorous free energy calculation methods

1.6.1 The importance of the free energy

The free energy governs many important thermodynamic phenomena. It is the

driving force behind chemical processes. The ability to predict a free energy gives

the ability to predict solvation, binding, stability, phase transitions and many other

properties. The free energy of a system is directly related to its partition function.

In the canonical ensemble the expression for the Helmholtz free energy is simply:

A =−kBT lnQNVT . (1.24)

In the isothermal-isobaric ensemble, the quantity on the l.h.s of equation 1.24

is the Gibbs free energy. At thermodynamic equilibrium, the free energy is min-

imised.29 By measuring the absolute free energy of two comparable systems, it is

possible to determine which is the more favoured.

1.6.2 Absolute free energy calculation

For simplicity, we ignore the contribution of the ideal part to the partition function

which may be analytically evaluated30 and hence write the following for the excess

free energy:

A =−
1

β
lnQNVT

=
1

β
ln(1/QNVT )

=
1

β
ln

N!h3N

R

exp

(

−βU(rN)

)

drN

(1.25)

Now we can write

1=
1

(8π2V )N

Z

exp

(

+βU(rN)

)

exp

(

−βU(rN)

)

drN (1.26)

The constant factor in equation 1.26 arise from the integration of 1 over phase

space.
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Equation 1.26 is inserted into 1.25

A =
1

β
ln

N!h3N

(8π2V )N

R

exp

(

+βU(rN)

)

exp

(

−βU(rN)

)

R

exp

(

−βU(rN)

) drN

=
1

β
ln

N!h3N

(8π2V )N

Z

exp

(

+βU(rN)

)

π(rN)drN

=
1

β
ln

N!h3N

(8π2V )N
〈

exp

(

+βU(rN)

)

〉

(1.27)

Equation 1.27 shows that the free energy of a system can be calculated as an

ensemble average. The constant factor can be difficult to calculate since it would

require the definition of the volume of phase space V. If one is interested in the

difference in absolute free energy between two comparable systems, it can be ig-

nored as it only acts to shift the value of the absolute free energy by a constant off-

set. Unfortunately, when subjected to the techniques developed previously, equa-

tion 1.27 exhibits a very poor convergence behaviour. This is because Metropolis

Monte Carlo samples states according to the Boltzmann distribution which gener-

ates mostly states of low energy. States of high energy are rarely encountered, yet

they make large contributions to the ensemble average because of the sign of the

exponential. 2

Because in chemical systems, there are so many high energy states (often cor-

responding to atomic overlaps) a direct estimation of the free energy A by equation

1.27 is a hopeless task. Furthermore, one could question the merit of this approach.

The vast majority of thermodynamic experiments relies on the measurements of

equilibrium constants which can be directly related to a change of free energy.

The author is not familiar with any technique that would measure an absolute free

energy. This leads us to the next section which discuss calculation of free energy

differences.

2That high energy states corresponding to configurations of vanishingly small Boltzmann factor
make an increasingly large contribution to this ensemble average is a puzzling mathematical fact
that begs to be reconciled with a physical interpretation.
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1.6.3 Free energy perturbation

Although a direct approach to the calculation of free energies is impractical, Zwanzig

has shown that it is possible to calculate the relative free energy of two different

systems A and B.49

∆GA→B = GB−GA

= (−
1

β
lnQB)− (−

1

β
lnQA)

=−
1

β
ln

[

QB

QA

]

=−
1

β
ln

[R

exp(−βUB(r
N))drN

R

exp(−βUA(rN))drN

]

multiply by 1 = exp(−βUA(r
N)) exp(βUA(r

N)) gives,

=−
1

β
ln

[R

exp(−βUB(r
N))× exp(−βUA(r

N)) exp(βUA(r
N))drN

R

exp(−βUA(rN))drN

]

=−
1

β
ln

[
R

exp(−βUA(r
N))× exp

(

−β(UB(r
N)−UA(r

N)
)

drN
R

exp(−βUA(rN))drN

]

=−
1

β
ln

[

Z

exp(−βUA(r
N))

QA
× exp(−β∆UAB(r

N))drN
]

=−
1

β
ln

[

Z

πA(r
N)× exp(−β∆UAB(r

N))drN
]

=−
1

β
ln
〈

exp(−β∆UAB(r
N))

〉

A

(1.28)

This equation shows that the relative free energy is the logarithm of the en-

semble average of the exponential of the Boltzmann weighted energy difference

between the potentialsUA andUB. In computer simulations, the Zwanzig equation

is implemented using the Free Energy Perturbation methodology.37 A simulation

is performed with the potential UA and at each step i of the Markov chain the

quantity exp(−∆UAB(i)/kBT ) is accumulated. The approach sounds simple but in

practice there are several pitfalls that must be avoided in order to obtain reliable
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results.

One difficulty encountered in applying equation 1.28 to calculate free energy

differences is that the potential energy function of systems B and A can be too dif-

ferent. If the low energy regions of B are in portions of phase space corresponding

to high energy regions of A, then a simulation run with potential UA will rarely

generate the significant configurations of potentialUB. As a result, the free energy

change ∆GA→B is likely to be overestimated. The same situation arises if the po-

tentials are switched and ∆GB→A will be overestimated. Any difference between

these two quantities is known as hysteresis. If the hysteresis is large, the calculated

free energies will be a poor approximation of the actual quantity.

A simple solution is to multi-stage the calculation. A series of intermediate po-

tentialsUP(λ) are defined, whereUP(0) =UA andUP(1) =UB. One can then connect

state A and B by a set of more similar states and eq 1.28 can be rewritten as a sum

of energy differences.

GB−GA = ∆G =
1

∑
λ=0

−kBT ln< exp(−∆U ′/kBT ) >λk
(1.29)

where ∆U ′ =UP(λ)k+1−UP(λ)k .

1.6.4 Thermodynamic integration

Thermodynamic Integration (TI) is another established rigorous free energy method.38

Instead of summing free energy differences between neighbouring values of λ, a

set of simulations are run at different λ values. The free energy gradient (∂G
∂λ )λ is

estimated at each of these λ values. Once all the free energy gradients are known,

they may be integrated to yield the relative free energy change along the λ coordi-

nate.

Gλ=1−Gλ=0 =
Z 1

0

(

∂G

∂λ

)

λ

dλ (1.30)

This integral can be evaluated numerically, e.g. via the trapezium rule.38 The

free energy gradients themselves may be obtained analytically or numerically. The
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ensemble average of the gradient of force field,
〈

∂U
∂λ

〉

λ
, is equal to the free energy

gradient.30

Z 1

0

(

∂G

∂λ

)

λ

dλ =
Z 1

0

〈

∂U

∂λ

〉

λ

dλ (1.31)

The ensemble average of the gradient of the force field can be evaluated by

calculating the gradient of each force field term directly with respect to λ. An

alternative numerical route is to approximate the gradient, (∂G
∂λ )λ, via the finite

difference, (∆G
∆λ )λ.

This free energy difference can be calculated via the Zwanzig equation, with

the reference state at λ, and the perturbed state at λ + ∆λ. This would give a for-

wards estimate of the free energy gradient. A perturbed state of λ−∆λ yields the

backwards estimate. These two estimates should of course be equal if ∆λ were suf-

ficiently small, and the trajectory ran until the Zwanzig equation had converged.

This method is normally referred to as Finite Difference Thermodynamic Integra-

tion50 (FDTI).

Over the last decade, several studies of protein-ligand complexes have been

published, suggesting that the free energy perturbation or thermodynamic integra-

tion methodologies can yield results in good agreement with experimental mea-

surements of binding affinities of protein-ligand complexes.28,51–58

1.6.5 Replica exchange thermodynamic integration

A recent interesting development in free energy calculation methods, inspired by

generalised ensemble methods, is the Replica Exchange Thermodynamic Integra-

tion method (RETI).59,60 RETI forms a generalised ensemble over the coupling

parameter λ which connects two different Hamiltonians in a free energy simula-

tion. To conducts a RETI simulation, a set of replicas that covers the the range of

the coupling parameter λ are run. Periodically, moves between replicas i and j of

Hamiltonian HA and HB are attempted. A suitable acceptance test is:

exp

[

β
(

EB( j)−EB(i)−EA( j)+EA(i)
)

]

≥ rand(0,1). (1.32)
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Unlike Parallel Tempering, a RETI simulation can be performed at no extra

cost since all the simulations are already needed in standard simulations. Neig-

bouring replicas tends to exchange with higher probabilities than in PT simulations

as the systems tends to be more similar over a change of λ than over a change of

temperature. RETI provides enhanced sampling as it allows individual trajectories

to jump to distantly related configurations in phase space. In favorable cases, it

can allow some replicas to overcome barriers by ’dodging it’. This happens when

a replica at λi exchanges with another replica running at a λ j value which does not

experience this barrier, performs some local sampling and then exchanges back

into the original λi value in a region that lies on the ’other side’ of the barrier. If

every λ value experience a similar high barrier, then the quality of the sampling

will not be improved much over standard methods. Calculations of the relative sol-

vation energies of water and methane in water and the binding energy of halides

to a Calix[4]pyrrole system have been reported in the literature.59,60 In each case,

RETI performed better than established free energy methods.

1.6.6 One-step multiple perturbed states

A drawback to established free energy simulation protocols is that they require

several simulations at different values of the coupling parameter λ to yield a single

free energy difference. In the free energy perturbation methodology the relative

free energy difference is estimated by perturbing a reference state into the state of

interest. It has been proposed by Schafer et al. that a simulation could be run in

which the reference state is perturbed into several different states.61 This allow the

simultaneous calculation of the relative binding free energy of several species, and

because intermediates values of the coupling parameter λ are not simulated, the

methodology can quickly become 10-100 times faster than conventional FEP or TI.

In this situation, it is important that the reference state is similar to the perturbed

states for the free energy differences to be readily converged. This constraint is

relaxed by adopting a non chemical reference state that is designed to have good

overlap with the series of perturbed states. This is typically done in conjunction

with the use of a softened non-bonded interaction function.62
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The methodology has been applied with some success to the calculation of

a series of structurally similar63 or different compounds binding to the ligand-

binding domain of the estrogen receptor.64 In a similar study applied to ligands

binding to the protein Xa, it was found that the design of an appropriate reference

state was difficult.65 The accurate reproduction of solvation free energies with this

methodology required a particular “soft-dipole” energy function.66

In general it seems that the one step multiple perturbed states can be very

efficient, providing a suitable reference state that will sample all the low energy

configurations of all the considered ligands, can be devised a priori. In complex

systems, typical of the condensed phase, this can prove difficult.

1.6.7 Slow and fast growth

An established free energy method that has been in used for some time is the so

called ‘slow growth’ method. In a slow growth method, the value of λ is slowly

increased by a constant amount after a number of MC moves or MD time-steps

such that at the start of the simulation, λ = λ0, and by the end of the simulation,

λ = λ1. If the simulation consists of M steps, then δλ is given by,67

δλ =
λ1−λ0

M
. (1.33)

Because the system is constantly perturbed, the gradual increase of λ requires

work, which can be calculated as:

W =
M

∑
i=1

δλ

(

∂E

∂λ

)

λ=λ0+iδλ

. (1.34)

An advantage of the slow growth approach is that a single simulation is re-

quired to obtain a work value. In the limit of an infinitesimal increase of λ, the

system would be in thermodynamic equilibrium throughout the whole simulation

and the work value obtained could be related directly to an equilibrium free en-

ergy difference. However, because the perturbation of the coupling parameter and

the number of steps between two subsequent increase of λ is necessary finite in a
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computer simulation, the computed work value will always be larger than the free

energy change.38

W ≥ ∆G. (1.35)

An interesting elaboration on the slow growth approach is the ‘fast growth’

method proposed by Jarzinsky68,69 whose essence is conveyed by equation 1.36:

exp(−W/kBT ) = exp(−∆G/kBT ). (1.36)

In the equality 1.36, the change in free energy ∆G of a perturbation is shown

to be related to the average of the work values W calculated for several fast growth

simulations. Crucially, the equality is independent of the rate at which the coupling

parameter λ is increased. This means that an equilibrium thermodynamic property

can be derived by averaging the work values of several non equilibrium simula-

tions. Because λ is typically increased much more quickly than in a slow-growth

simulation, the method has been named fast growth.70

The validity of the fast growth method has been initially tested on Lennard

Jones fluid,70 the potential of mean force between a pair of methane molecules

in water,71 the charging of a sodium ion in water,72 and tested experimentally.73

Refinements to the fast growth method have proposed recently, aimed mainly at

reducing the fluctuations in the distributions of work values to improve the rate of

convergence of the average work value.74,75

The main potential of the fast growth method seems to lie in its trivial paral-

lelization which would make it very suitable to modern GRID enabled computing

technologies. The author is not aware of published work concerning the applica-

tion of the fast growth method to protein ligand binding free energy calculations.

1.7 Calculating errors in free energy simulations

When using Monte Carlo or molecular dynamics methods to generate configura-

tions and obtain the density of states of the simulated system, errors are introduced

because of the necessary finite number of configurations. The ensemble average of

a property < A> is usually said to be converged if if does not change significantly
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when the number of configurations used to determine it is increased. A useful way

to assert such a proposition is to subdivide a simulation of N configurations into K

blocks of N/K configurations, calculate < A >K for each block and then the stan-

dard deviation from that distribution of values. In principle, if all the portions of

phase space that contribute significantly to < A > have been visited with the right

probability in each block, all the values will be similar and the standard deviation

low. This method suffers from two important difficulties.37

First, the blocks must be long enough to be completely statistically uncorre-

lated with each other. Monte Carlo or molecular dynamics generate successively

highly correlated states and the number of steps that are necessary before a con-

figuration is uncorrelated to its starting configuration is system dependent and can

not be easily determined. Second a low standard deviation guarantees by no mean

that simulation results have converged to the right answer. If the system is unable

to climb local barriers, the simulation may explore thoroughly one local minimum

and miss out completely other important regions of phase space. A block analysis

will suggest the results are (incorrectly) converged.

Rather than relying on block averaging to obtain error estimates, one could run

several independent simulations, using different starting points that may have been

obtained previously by annealing (e.g, simulate at very high temperature and cool

down the system). This method has the obvious drawback that one has now to run

several simulations instead of one.

When one is interested in the free energy difference of several related systems,

it is possible to assess to some degree the convergence of the simulation results by

running a few additional simulations. Figure 1.1 highlights the principle. Because

free energy is a state function, the sum of the changes in free energy along a path-

way that start from state A and eventually returns to that state, should be equal to

zero. The extent by which the cycle closure deviates from this figure is a measure

of the lack of convergence.

Unfortunately, none of the approaches discussed here guarantees that the sim-

ulation results are converged. It appears that without an a priori knowledge of the

potential energy surface, it is impossible to assert rigorously whether or not the

results of a simulation are truly converged.
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Figure 1.1: The closure of a thermodynamic cycle. While only two simulations
are necessary for the calculation of the relative free energy of system B or C with
respect to system A, a third simulation that calculates the relative free energy of
system C with respect to B allows the closure of a cycle involving A,B and C.
Deviations from the theoretical result of 0 are a measure of errors.

1.8 Approximate Free Energy Methods

The methods discussed in the previous sections are rigorous in the sense that they

yield free energies in a statistical mechanical sense. Their application can be quite

time consuming however and this has prompted the development of several meth-

ods that try to approximate the calculation of a binding free energy, of which two

such methods will be discussed.

1.8.1 Linear interaction energy

In the Linear Interaction Energy method (LIE)76 the absolute binding free energy

of a ligand to a protein is estimated by running two independent simulations. One is

the ligand free in solution and the other is the solvated protein-ligand complex. The

absolute binding free energy, ∆G, is then estimated from the simulation average of

the difference in electrostatic energy between the ligand and the environment in

the two simulations,
〈

∆Uelec

〉

, and a similar average for the van der Waals ligand-

environment energy,
〈

∆Uvdw

〉

,

∆G = 0.5
〈

∆Uelec

〉

+α
〈

∆Uvdw

〉

. (1.37)
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There are some theoretical reasons that can justify the factor 0.5 for the Couloumbic

term and they can be found in the Linear response approximation.76,77 The value

of the parameter α was originally determined by a fit to the experimental bind-

ing free energy of a series of endothiapepsin inhibitors and a value of 0.161 was

thus derived. In subsequent work from different research groups it was shown that

in general good results can be obtained but that no universal set of parameters

can explain the binding free energies of different protein ligand complexes.78–83

Furthermore, the factor 0.5 for the coulombic term did not give good agreement

with experiment in many cases. As a result it has been proposed to add new terms

to equation 1.37 depending on the system under study and to derive appropri-

ate weighting factors empirically. Modern LIE studies can typically be conducted

when there is enough experimental data on protein-ligand binding free energies

such that sufficiently robust parameters for that system can be derived for an equa-

tion derived from 1.37. In that respect, LIE appears more as a knowledge based

method than a true ab initio free energy prediction method.

1.8.2 MM/PBSA

Another approximate binding free energy calculation method that has received

much attention is theMolecular Mechanics/Poisson Boltzmann Surface Area method

(MM/PBSA).84

∆Gbind =
〈

∆Emm

〉

+∆Gsolv−T∆S. (1.38)

Where < ∆Emm > is a difference in molecular mechanics energy, ∆Gsolv is a

solvation free energy, T the temperature and ∆S a change in entropy.

In this approach, a series of molecular dynamics trajectory for the solvated

protein-ligand complex and the protein and ligand in solution is first generated.

The first term in equation 1.38 is taken as the difference in the average molecular

mechanics energies between the complex and isolated protein and ligand. A num-

ber of snapshots (typically 50-200) are extracted from these molecular dynamics

trajectories and subjected to a Poisson Boltzmann Surface Area (PB/SA) calcula-

tion. The ligand and protein are then taken apart and their molecular mechanics

energies are calculated. The difference in the resulting average energies yield the
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second term of equation 1.38. The third term reflects the change in entropy upon

binding and is calculated from one snapshot, using normal mode analysis.

To date the MM/PBSA method has been applied to several protein-ligand sys-

tems.85–90 While impressive results have been reported in some cases, large scale

validation studies tend to indicate that MM/PBSA is accurate to within 2 to 3

kcal mol−1 only.89 Pearlman has shown that, on a series of congeneric p38 MAP

kinase inhibitors, the MM/PBSA was very inaccurate and no better than some

common scoring functions.91 Woo et al. reported MM/PBSA results in error by

more than 70 kcal mol−1 in the calculation of the absolute binding free energy of

a phosphotyrosine peptide pYEEI to the Src homology 2 domain of human Lck.92

There are a number of reasons why the MM/PBSA methodology can be ex-

pected to fail in some cases. First, the distribution of snapshots taken from the

molecular dynamics simulation is small and the resulting ’ensemble’ may not re-

flect accurately the true Boltzmann distribution. Second, the change in solvation

free energy is estimated by using these same snapshots and yet one should expect

a different distribution of states between an explicit and implicit representation of

the solvent. Third, the first two terms of equation 1.38 are taken as the difference

of very large numbers (the molecular mechanics energy of a protein ligand system

is usually in the order of a few thousand kcal mol−1) with significant fluctuations.

Obtaining a binding free energy in the order of minus one to ten kcal mol−1 from

this protocol can be challenging. Fourth, the last term in equation 1.38 is a poor

approximation of the entropy loss, problematic to calculate in many instances, and

often simply ignored.

1.9 Continuum solvation

Many interesting biomolecules performs their functions in an aqueous environ-

ment. Realistic computer simulations therefore have to consider the effects of the

solvent on the solute structure and dynamics. A perhaps obvious approach is to

represent the surrounding solvent with a large number of molecules, each interact-

ing according to a potential defined in the previous section. Unfortunately, tradi-

tional simulations must include thousands of water molecules to solvate properly
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a protein. Complicated methods such as periodic boundary conditions or Ewald

summation are also needed to avoid artificial boundary effects.38 Thus, it is not

uncommon that during the simulation, most of the time is spent computing non

bonded interactions for solvent molecules, which are usually not the prime inter-

est of the simulation.

A serious alternative to these explicit solvent simulation is to consider the sol-

vent as a high-dielectric continuum interacting with charges that are embedded in

solute molecules of lower dielectric. The solute response to the reaction field of the

solvent dielectric can then be modelled by applying laws of classical electrostatics.

1. Thousands of solvent molecules do not have to be modelled explicitly, re-

ducing the complexity of the system and the CPU cost.

2. In an explicit solvent simulation, after a solute move, several solvent moves

may be needed to reorganise the surrouding solvent molecules while no

such problem is observed in implicit solvent simulations. Furthermore, the

presence of the explicit solvent molecules may render large conformational

changes of the solute much more difficult.

The Poisson Boltzmann (PB) equation is one of the most accurate ways to

model these electrostatic interactions.93 Analytical solutions of the PB equation

for solutes of arbitrary shape are not available and are usually obtained by finite-

difference or boundary-element numerical methods. Solving the PB equation is

quite expensive for large molecules and other more efficient and approximate

methods have been proposed.

One of these methods is the generalised Born (GB) approach which we have

adopted in our work and is presented in the next sections.

1.9.1 The Born equation

Born has shown94 that an analytical equation for the electrostatic energy of an

isolated ion can be derived from classical electrostatic theory.

Classical electrostatic theory states95 that the total electrostatic energy in a

dielectric medium is defined as:
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G =
1

8π

Z

V

~E.~D.dV (1.39)

~D = ε.~E (1.40)

~E and ~D are the electric field and electric displacement, ε is the dielectric con-

stant of the medium and dV a volume element. ~E can be obtained from Gauss

Law:

Z

S

~E.d~S =
Q

ε
(1.41)

The surface integral on the left is the area integral over any closed surface. Q

is the total charge that lies within the space delimited by ~S.

For a uniformly charged spherical shell of radius α and interior dielectric εvac

inside and outside, one can obtain:

~Eint = 0 ~Dint = 0 r < α (1.42)

~Eout =
kq

εvacr3
.~r ~Dout =

kq

r3
.~r r > α (1.43)

With q the total charge of the sphere and k the Coulomb constant (1/(4πε0)).

The total electrostatic energy of the system is:

Gvac =
1

8π

Z

V

~E.~D.dV (1.44)

=
1

8π
[
Z

in

~Ein.~DindV +
Z

out

~Eout .~DoutdV ] (1.45)

=
k2

8πεvac

Z

out

q2

r4
dV (1.46)

By integrating 1.46 from α to ∞ we find:

Gvac =
q2k2

2εvacα
(1.47)
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If the same spherical system is now considered in a dielectric medium with

an interior dielectric of εi and and exterior dielectric constant of εsolv, the total

electrostatic energy can similarly be shown to be:

Gsolv =
q2k2

2εsolvα
(1.48)

The electrostatic energy to transfer a spherical charged ion of radius α from

a medium of dielectric εvac to another of dielectric εsolv is the difference between

1.48 and 1.47. This is the Born Equation94

∆Gborn =
k2

2
(
1

εsolv
−

1

εvac
)
q2

α
(1.49)

1.9.2 Electrostatics and the generalised Born model

The Born model of solvation can be generalised to a molecule of arbitrary shape

by treating each atom as a sphere of radius αi, a charge qi and interior dielectric εi.

If we assume initially that each sphere is separated by a distance large enough

so that they appear as point charges to other spheres (e.g single dielectric medium),

then the total electrostatic energy of the system is the sum of the Coulombic inter-

action and the Born solvation energy.

Gtot =
1

2
∑
i

∑
j 6=i

qiq j

εsolvri j
−
1

2
(
1

εvac
−

1

εsolv
)∑

i

q2i
αi

(1.50)

Unfortunately, equation 1.50 is not valid for molecular systems where the ra-

dius αi and the distance ri j are usually too close for the former to be negligible.

Still96 has shown that by splitting the Coulombic interaction into two terms,

one can write equation 1.51

Gtot =
1

2
∑
i

∑
j 6=i

qiq j

εvacri j
−
1

2
(
1

εvac
−

1

εsolv
)∑

i
∑
j 6=i

qiq j

ri j
−
1

2
(
1

εvac
−

1

εsolv
)∑

i

q2i
αi

(1.51)

Terms 2 and 3 can then be recombined in a single formula:
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∆Gtot =
1

2
∑
i

∑
j 6=i

qiq j

εvacri j
+∆GGenborn (1.52)

Where ∆GGenborn is:

∆GGenborn =−
1

2
(
1

εvac
−

1

εsolv
)∑

i
∑
j

qiq j
√

r2i j +BiB je

−r2
i j

4BiB j

(1.53)

Where Bi and B j are Born radii, similar to the quantity αi in equation 1.49.

This expression reduces to the Born equation for the case of a single spherical

ion and gives the Coulomb energy as ri j→ ∞.

It is important to realise that equation 1.53 has no physical basis. It results ef-

fectively from an interpolation between different theoretical results: the Born equa-

tion, the Onsager dipole energy equation and the Coulomb equation for widely

separated charges.

Much of the difficulty with 1.53 consists in computing the Born radii Bi. The

Born radius of one atom is affected by neighbouring atoms and is no longer equal

to αi. In the generalised Born formalism, Bi is defined as, the radius that would

give the actual electrostatic energy of the molecule-dielectric system by the Born

equation if all other atoms of the system were uncharged (only displacing the di-

electric). This corresponds to defining a spherically averaged dielectric boundary

for atom i (the angular dependence is not taken into account). The evaluation of

the integral itself is not straightforward as it depends on the position of all other

atoms of the solute with respect to the solvent/solute boundary. Bi can be derived

by the Poisson equation but this nullifies the advantage of the model.

In the original paper from Still,96 the Born radii are computed using a numeri-

cal method which can be summarised as:

1. Consider a shell of thickness Tk surrounding the van der Waals surface of

atom k.

2. Weight the interior radius (rk - 0.5Tk) of this shell using the ratio of solvent

accessible surface area Ak to the actual surface area.
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Rk=1

Rk=2

Figure 1.2: Generation of consecutive shells by equation 1.54

3. Repeat the weight for the exterior radius (rk + 0.5Tk) and calculate the dif-

ference between weighted interior and exterior radii.

4. Sum the difference between weighted interior and exterior radii for a series

of concentric shells up to shell M which encompasses the whole of the van

der Waals surface of the molecule.

5. For shellM no weight is applied and the radius is simply added to the previ-

ous summation term, to obtain an effective Born radius, which is then used

in equation 1.53 .

The method is illustrated by figure 1.2. A formal description of this algorithm

is given by equation.1.54

1

Bi
=

M

∑
k=1

Ak

4πr2k

[(

1

rk−0.5Tk

)

−

(

1

rk +0.5Tk

)]

+
1

rM+1−0.5TM+1
(1.54)

Because this method is time consuming, analytical approaches that are approx-

imate have also been developed.97,98 It is hoped that most of the errors arising from

these inexact solutions are systematic and can be corrected by empirical terms. In

our work we have used the Pairwise Descreening Approximation developed by

Hawkins et al97 to compute Born radii (details of the derivation are not shown).
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B−1i = α−1i −
1

2
∑
j 6=i

[
1

Li j
−

1

Ui j
+

Ri j

4
(
1

U2
i j

−
1

L2i j
)+

1

2Ri j
ln
Li j

Ui j
+

S2i jα
2
j

4Ri j
(
1

L2i j
−

1

U2
i j

)]

(1.55)

Li j = 1 if Ri j + Si jα j ≤ αi

Li j = αi if Ri j - Si jα j ≤ αi < Ri j +Si jα j

Li j = Ri j−α j if αi ≤ Ri j - Si jα j

Ui j = 1 if Ri j + Si jα j ≤ α j

Ui j = Ri j + Si jα j if αi < Ri j + Si jα j

Ri j is the distance between two spheres centred on atoms, αi the intrinsic Born

radius of atom i (or otherwise, the Born radius that would give its solvation energy

if it was alone) and Si j a screening factor that scale the Born radius of atom j. This

factor was introduced to correct systematic errors in the PDA approximation, be-

cause PDA over-estimates the Born radius by not taking into account the fact that

two atomic spheres, j, j’ can overlap. In this case Si j accounts for the overlapping

region of dielectric being displaced twice. This means that scaling factors should

have a value between 0 and 1.

The GB equations, or PB for that matter do not tell the whole story of solvation.

It is also necessary to take into account other effects that are described in the next

section.

1.9.3 The apolar component of solvation

Solvation is not entirely determined by the distribution of charges of the solute

inside a cavity.

To insert a solute inside solvent, a cavity the size of the solute has to be cre-

ated. In the case of water, the hydrogen bonding network is disrupted and solvent

molecules have to reorganise and reorient around the solute.

van der Waals forces also play a role as solute atoms are able to establish

interactions with solvent atoms. Solvent atoms lie usually far enough away from

solute atoms for the van der Waals forces to be predominantly attractive.
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In most continuum solvation models, both effects are taken into account with

a single dependence on the solvent accessible surface area (SASA) of the so-

lute.96,99, 100

Gnonpol = Gcav +GvdW =
N

∑
k=1

σk.SASAk (1.56)

The SASA is the surface that defines the region of space that solvent is ex-

cluded from upon insertion of the solute. For that purpose it is assumed that water

can be represented as a sphere of radius 1.4 Å , and the SASA is defined by rolling

that sphere over the van der Waals surface of the solute. The set of coefficients σk

are usually empirically derived.

Using the SASA of a solute to model solvation has the drawback that buried

atoms do not interact at all with the solvent, which is not the case in explicit solvent

simulations.101 It is also known that equation 1.56 cannot explain the change in

solvation free energy for a series a linear alkanes and the solvation free energies of

different rotamers of butane or hexane.102

Some workers have proposed in the recent years a more complex treatment of

the non polar part of solvation by explicitly considering cavitation and dispersive

forces separately.103,104 The methodology has been employed to study the free

energy surface of small peptides and appear to yield superior results.105

1.10 Conclusion and outline of the thesis

The routine prediction of protein-ligand binding free energies by computer simu-

lation would provide the pharmaceutical industry with a very powerful tool to de-

velop better drugs efficiently. Current routinely employed technologies are based

on simplistic empirical functions that are known to suffer from several flaws and

are not judged reliable enough to discriminate between different potent binders. By

constructing an atomistic model of protein-ligand interactions, the free energy of

binding can be derived using the laws of statistical mechanics. Practical solutions

of the resulting integral can be obtained by generating ensemble of states represen-

tative of the protein-ligand interaction, and this is traditionally achieved by Monte
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Carlo or molecular dynamics methods. That collection of states is a function of

the potential energy function which mediates interactions between all of the sim-

ulated particles. This integral can be further simplified by recasting the absolute

free energy calculation problem in the calculation of relative binding free energies,

which requires the introduction of a parameter λ to smoothly transform one ligand

into another. Even then, the resulting ensemble averages are hard to evaluate ef-

ficiently and non rigorous methods try to approximate a binding free energy with

simpler approaches. These methods suffer from numerous approximations which

limits their accuracy and range of application.

There are several reasons why free energy calculations are not routinely em-

ployed by the pharmaceutical industry to predict binding free energies. One of is

their high computational cost which drastically limit the number of compounds

that can be tested. A second reason is that it is often difficult to consider struc-

turally dissimilar compounds in a single free energy study. This limit the range of

systems that can be studied with the existing methodologies.

The main hypothesis that prompted this work can be summarised as follow:

free energy calculations could be made more efficient, and yet accurate, by adopt-

ing a simplified treatment of solvation.

The validity of this assertion is tested in the following chapters. Chapter 2 will

discuss a novel parameterisation of a generalised Born model of water, with the

aims of adopting this model in protein ligand binding free energy calculations. In

chapter 3, algorithmic improvements aimed at increasing the efficiency of gen-

eralised Born simulations will be introduced. Validation of the technique is then

performed by completing two protein ligand binding free energy studies and the

results are reported in chapter 4 and 5. With conclusive answers to the main ob-

jective of this work provided, alternative methods aimed at improving the range of

molecules that can be studied with free energy techniques will be then considered

in chapter 6. The lessons learned throughout this thesis will finally be summarised

in chapter 7 to gauge the success of this project.



Chapter 2

Parameterisation and validation of a

generalised Born surface area model

of water

“I recognize that many physicists are smarter than I am–most of

them theoretical physicists. A lot of smart people have gone into theo-

retical physics, therefore the field is extremely competitive. I console

myself with the thought that although they may be smarter and may

be deeper thinkers than I am, I have broader interests than they have.”

Linus Pauling

2.1 Introduction

Traditional free energy studies are often faced with two major obstacles. Typical

molecular force fields have been developed to simulate small organic or biomolecules.

While they provide a reasonable set of parameters for proteins or DNA, it is

common that they lack parameters to describe completely the complex organic

molecules that are typical of drugs. Recipes that allow the derivation of these miss-

ing parameters are known, but their application can be very time-consuming. A

major aim of this thesis is to provide a free energy method that allows the simula-

tion of a large number of protein-ligand complexes in a few hours. The ability to
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simulate quickly such systems is of little use if it is necessary to previously spend

weeks deriving missing force field parameters.

Representing solvent effects in a free energy simulation is also a source of

problems. While the most proven method is to consider explicitly a large number

of solvent molecules surrounding the solute, it is also the most expensive way to

address this issue.

The goal of this chapter is to introduce methods that deal with these two diffi-

culties.

2.2 Selecting a force field

When comparing various modern force fields such as AMBER, OPLS or CHARMM,33,34, 36

it can be difficult to pick one force field that repeatedly outperforms the others.

Shirts et al. have shown that the OPLS force field is more accurate than others in

reproducing the solvation free energies of analogue of amino acid side chains.106

However, the derivation of parameters for the OPLS force field is impractical for

complex small molecules for which limited or no thermodynamic data is available.

The AMBER force field is known to perform reasonably in simulations of proteins

and nucleic acids. Recently, the General Amber Force Field (GAFF) has been in-

troduced.107 GAFF has been designed to be compatible with the AMBER param-

eter sets and to provide force field parameters for small molecules. The recipe

for deriving parameters for the GAFF force field expects atomic partial charges

derived using the RESP/HF6-31G** method. In this approach, a quantum me-

chanical package is used to obtain a map of the electrostatic potential around the

solute of interest. Atomic partial charges that can reproduce the quantum mechan-

ical electrostatic potential are then obtained by fitting. Apart from the associated

computational cost, special considerations have to be taken to deal with buried

atoms which tend to be assigned ill-defined atomic partial charges. Interestingly,

the basis set 6-31G** is known to overestimate polarisation in the gas phase by

10-20%. This corresponds roughly to the amount of polarisation the solute is ex-

pected to receive when solvated.34 This rather fortuitous error thus provides partial

charges suitable for condensed phase simulations. Because of the complexity and
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the cost of the RESP method, a new approach has been proposed by Jakalian et

al.108,109 In the AM1/BCC method, the wavefunction of the solute of interest is

obtained with the AM1 semi-empirical Hamiltonian.110 Atomic partial charges

are then extracted from the wavefunction, based on a Mulliken population anal-

ysis.111 The Mulliken charges are known to perform poorly in condensed phase

simulations. In the second step of the method, a set of bond charge corrections

(bcc) are applied to the Mulliken charges to obtain atomic partial charges that re-

produce closely the QM electrostatic potential obtained with the RESP method.

The AM1/BCC method has been shown to reproduce well solvation free ener-

gies of small molecules and interaction energies of various biologically relevant

dimers, and at a fraction of the computational cost of the RESP method.109 The

Antechamber program was developed to automate system setup and is part of the

AMBER suite of programs.112 Antechamber provides file conversion, atom typ-

ing facilities, force field parameter assignment, and a number of charge calculation

methods, including the AM1/BCC method. The combination of the GAFF force

field with the AM1/BCC method provides a route by which force field parameters

for a large number of small molecules can be derived easily. The availability of

the Antechamber program makes automation of system setup a possibility. These

methods were therefore adopted for the work covered in this thesis.

2.3 Representing water

An efficient way to decrease the complexity of the system to be studied by a free

energy simulation is to reduce the number of modelled particles. Explicit water

molecules can be removed from the system and the influence of the solvent on the

solute can be represented through the use of continuum solvation techniques such

as the Poisson Boltzmann or generalised Born equation.93,96 Many studies have

pointed out that the generalised Born method is very efficient and yet reasonably

accurate. This theory was therefore selected to conduct free energy simulations in

a realistic solvent environment.

Reddy et al. have studied the transferability of a parameterised GBSA model

to different force fields and concluded that while reasonable behaviour is observed
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in every case, re-parameterisation for each force field is necessary to yield opti-

mum performance.113 At the beginning of this project, there was no parameterised

model of GBSA compatible with AM1/BCC partial charges available in the liter-

ature. A set of parameters compatible with RESP/HF6-31G** partial charges has

been proposed,114 but was judged inadequate because of the small size of its train-

ing set and its lack of parameters for sulphur and halides, necessary to cover the

chemical functionalities of many drug-like molecules.

Because of the lack of suitable parameter sets, it was decided to parameterise

a generalised Born surface area model compatible with AM1/BCC charges and

covering a large number of chemical functions that are commonly encountered in

drug-like molecules.

2.3.1 Construction of a dataset

Experimental vacuum to water transfer energies of a wide range of simple organic

compounds 115 were gathered. A model of each of these molecules was then built

for the AMBER99 force field and the atomic partial charges were derived using

the AM1/BCC method.

This set contains a balanced mixture of organic functions encountered within

drugs. It was also required that these chemicals would not undergo any conforma-

tional change upon solvation. This hypothesis was not rigorously tested but com-

pounds showing possible problems were not included (for instance : 1,2 dichloroethane,

triethylamine ). It is necessary that solutes in the set keep the same conformation in

vacuum and in aqueous phase, otherwise the experimental solvation energy would

contains force field terms other than the GBSA term that represent the internal

strain of the solute. Taking the influence of these terms into account would render

the parameterisation process too complex.

The set was split in two groups, a training set with approximately 75% of

the compounds and a validation set. Compounds in the validation set were not

used to derive coefficients for our solvation model. This allows us to check the

transferability of the derived parameters. Table 2.1 summarises the composition of

the dataset.
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Table 2.1: Composition of the dataset

Family Training Validation

Linear Alkanes 6 2

Branched Alkanes 3 1

Cycloalkanes 4 1

Alkenes 6 2

Alkynes 3 1

Arenes 6 2

Alcohols 7 3

Aldehydes 4 2

Ketones 6 2

Carboxylic acids 4 1

Esthers 6 2

Ethers 6 2

Aliphatic amines 10 3

Aromatic amines 6 2

Nitriles 3 1

Amides 3 1

Thiols 6 2

Multi-functionals 8 3

Halides 18 7

Nitro 4 2

O charged 2 1

N charged 9 3

S charged 3 1

Total 133 47

2.3.2 The adjustable parameters of a GBSA model

The equations 1.51 to 1.56 that underly the GBSA theory of solvation have been

introduced in the previous chapter. The application of these equations requires the

knowledge of a number of parameters. Because there is no a prioriway to establish

the value of these parameters, they are often adjusted so that the complete set of

parameters reproduce experimental data. Alternatively, the behaviour of a GBSA

model can be compared to the more rigorous Poisson Boltzmann equation.

The apolar component of solvation modelled by the somewhat simplistic equa-

tion 1.56 requires a set of σk with k depending on the atom type. These parameters
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were treated empirically and were fitted to experimental data.

All generalised Born methods require the calculation of a Born radius. This

can be achieved by different algorithms. Most of them require the definition of

an “intrinsic” Born radius. This quantity corresponds to the radius a completely

isolated atom should adopt in order to reproduce its solvation free energy through

the Born equation 1.49. Except for a few exceptions, this quantity cannot presently

be determined experimentally; it is therefore common practice to derive these pa-

rameters empirically. The Born radius can be expected to be reasonably similar to

the van der Waals radius of an atom and in this work the intrinsic Born radius of

an atom i was derived by multiplying the van der Waals radius of atom i by an

appropriate multiplicative offset. In the AMBER force field polar hydrogen atoms

usually have a small or zero van der Waals radius which is not appropriate for the

definition of the intrinsic Born radius because it leads to too negative solvation

energies. To avoid these problems, polar hydrogen atoms are required to adopt a

minimum intrinsic Born radius of 1.10 Å.

Once the intrinsic Born radii are defined, “effective” Born radii (or simply

Born radii) can be calculated by various algorithms.96–98,103,116 In this work, we

have adopted the Pairwise Descreening Approximation to calculate this quantity,97

mainly because of its computational efficiency. In equation 1.55, scaling factors Si j

are required to correct systematic errors introduced by the approximation. It is not

clear how these factors should be derived. Previous studies have adjusted them

against the Born radii calculated by more rigorous methods.97 Others have treated

them as empirical parameters and adjusted them to minimise errors against exper-

imental hydration free energies.117,118 Since there is uncertainty as to which pro-

tocol is the most accurate, both approaches were considered in this study. Models

where scaling factors are treated empirically will be denoted PDAexp. A numeri-

cal integration scheme described by equation 1.54 was used to adjust the scaling

factors and the resulting models will be denoted PDAnum.

While it is tempting to introduce more parameters to increase the fit against

experimental data, this practice should be avoided because it can lead to overfit-

ting and poor transferability of the model. Very generic atom types were defined

and their number was kept low, in contrast to several existing GBSA parameter-
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isation.103,117,118 In total, 14 adjustable parameters were considered. They break

down as follows:

. Six different van derWaals offsets to determine αi are used. One for sp
2oxygen

(Osp2), one for sp3oxygen (Osp3), one for carboxyl and phosphate oxygen

(O2, AMBER atom type O2), one for nitrogen (N), one for nitrogen in amino

groups (N23, AMBER atom type N2, N3) and one for the remaining atoms

(others).

. Six different scaling factors are used in the PDA, one for hydrogen (H), one

for carbon (C), one for nitrogen (N), one for oxygen (O), one for sulphur

(S), and one for every halide (X).

. Two surface tensions terms are used, a positive value for hydrogen, carbon

and fluoride (γ), and a value of zero for the remaining atoms.

We stress that in the PDAnum series, the scaling factors were adjusted to re-

produce the Born radii obtained by numerical integration and not experimental

solvation free energies. They should therefore not be considered as empirical pa-

rameters in that series.

2.3.3 Deriving a set of optimum parameters with a genetic al-

gorithm

With 8 to 14 empirical parameters, it is clear that the optimum set of parameters

can not be derived by systematically varying each one of them. Genetic algorithms

are stochastic optimization methods that can avoid becoming trapped in local min-

ima and are thus an appropriate method for problems involving large number of

parameters.119 The term genetic is used because of the similarities between this

optimisation method and the natural evolution of genes in living organisms.

In a genetic algorithm, the following steps are applied:

1 Generate a population of individuals. Here an individual is a set of parame-

ters that represent one solution to the function to be optimised. The popula-

tion is a set of these set of parameters.
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2 Randomly pair individuals in the population and create offspring by mixing

the parameters of the two individuals. This can be accomplished in many

ways, for example by cutting each of the two sets of parameters at one point,

merging them and selecting one of the two resulting combination. This op-

eration is called crossover.

3 Select some parameters in the offspring and perturb their value by a random

amount. This operation is called mutation.

4 Evaluate the fitness of each individual. This is done by evaluating how well

each individual performs.

5 Replace the population of parents by their offspring and return to step [2].

This can be done in a number of way, which should be selected to favour

individuals with the best fitness. Alternatively, check for a termination crite-

rion.

After a suitable number of generations, step 2 allows for the optimum set of

parameters found in the initial population to emerge as the best individual. Step

3 introduces new diversity in the parameters so that, eventually, the whole param-

eter space can be covered. Many elaborate genetic algorithms exist, but the vast

majority follow the simple steps described here.

To derive a set of best performing parameters, the author wrote a program in C

that calculates the solvation energy for each molecule in the dataset according to

the generalised Born theory. This program was then linked to a Genetic Algorithm

C++ library120 and an optimisation routine was written.

The genetic algorithm used here is an elitist model.119 The fitness was de-

fined as the unsigned mean error between experimental and predicted hydration

free energies. The parameters are represented as a set of real numbers. Uniform

crossover is applied with a probability of 0.7. Gaussian mutations are applied with

a probability of 0.015. A difficulty sometimes encountered in the application of

genetic algorithms is that a few initial individuals of good fitness rapidly overtake

the whole population and prevent efficient coverage of the parameter space. To

prevent this phenomenon, linear scaling of the fitness, which reduces the dispar-

ity between good and bad performing individuals, and a large population of 500
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individuals are used. The genetic algorithms were run for a large number of gen-

erations to ensure that the results were converged. The best results were selected

for further tests.

For the first parameterisation method, where all the parameters are optimised

against experimental free energies of hydration, ∆Ghyd , the genetic algorithm re-

turned different sets of parameters that minimize the error between predicted and

experimental free energies of hydration. The top three solutions showed some dif-

ferences in the parameters, suggesting the existence of a broad minimum. A broad

minimum has also been observed by Rankin121 when using a PBSA model, where

three parameters were optimised against the experimental ∆Ghyd of a dataset of

organic molecules. Because of the larger number of parameters in our case, an

equivalent study is not possible. As observed by other workers, some scaling fac-

tors adopted values greater than unity and others are surprisingly small for some

atoms. The first two solutions, were judged very similar and only the first was kept.

The third solution, which is only marginally worse at predicting hydration free

energies, was also selected for further investigation because of the large scaling

factors for oxygen it adopted. In the remaining study, the first solution is denoted

PDAexp-1 and the third solution PDAexp-2.

In the second parameterisation method, the PDA is not employed initially and

the offsets to the van der Waals radii and the surface tension term are optimised

with the use of the finite difference scheme for the calculation of the effective Born

radii described in the previous chapter by equation 1.54. The best results of the ge-

netic algorithm were all converged toward the same solution to yield a model with

an unsigned mean error of 1.01 kcal mol−1. The scaling factors were then de-

rived to minimize the errors caused by the Pairwise Descreening Approximation.

This reproduced the polarisation energies obtained by the accurate computation of

Born radii to within 0.30 kcal mol−1. When the numerical integration of the Born

radii is replaced by the PDA approximation with this set of scaling factors, the

mean unsigned error against the experimental free energies of hydration increased

to 1.13 kcal mol−1. Here again, no significant difference was found for the scal-

ing factors between the top solutions and therefore a single set of parameters was

kept. This set of parameters will be called PDAnum-1 for the rest of this study.



CHAPTER 2. PARAMETERISATION AND VALIDATION OF A

GENERALISED BORN SURFACE AREA MODEL OFWATER 46

While computing potentials of mean force (see next sections), it was found that

slight modifications of PDAnum-1 increased the performance of the model. The

modified version is called PDAnum-2.

Table 2.2: Sets of Offsets to the van der Waals radii for the
derived models

Model Osp2 Osp3 O2 N N23 others

PDAnum-1 1.00 0.66 0.88 0.73 0.87 0.86

PDAnum-2 1.00 0.66 0.85 0.73 0.95 0.86

PDAexp-1 1.00 0.80 0.91 0.88 1.00 0.95

PDAexp-2 1.00 0.77 0.89 0.88 0.80 0.95

Table 2.3: Sets of PDA Scaling factors for the derived
models

Model H C N O S Xa

PDAnum-1 0.81 0.77 0.70 0.88 0.84 0.93

PDAnum-2 0.81 0.77 0.70 0.88 0.84 0.93

PDAexp-1 0.63 0.57 0.84 1.12 0.96 1.07

PDAexp-2 0.60 0.59 0.91 1.39 0.97 1.12

a X = F, Cl, Br, I

The offsets to the van der Waals radii and the PDA scaling factors for the

four solvation models are summarised in tables 2.2 and 2.3. For PDAexp-1 and

PDAexp-2 the surface tension term γ is 0.0078 kcal.mol−1.Å−2. For PDAnum-1

and PDAnum-2 the surface tension term γ is 0.0070 kcal.mol−1.Å−2.

The total average mean unsigned error for each solvation model for calculat-

ing the hydration free energy is reported in table 2.4 for the training set and the

validation set.

Table 2.4: Mean Error in kcal.mol−1 for the
derived models

Model Training set Validation set

PDAnum-1 1.13 1.17

PDAnum-2 1.13 1.07

PDAexp-1 0.79 0.87

PDAexp-2 0.83 1.01
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PDAexp-1 and PDAexp-2 outperform PDAnum-1 or PDAnum-2 on average.

This is presumably because the scaling factors have been allowed to compensate

for errors other than those caused by the PDA. Since PDAnum-1 differs from the

two previous models only in the way the scaling factors have been parameterised,

and performs significantly worse on the training set, on first inspection it appears

it is better to let the scaling factors compensate for other errors than those caused

by the Pairwise Descreening Approximation, as has been done previously.117,118

This assertion will be examined in the next sections.

2.3.4 Comparison with Poisson Boltzmann calculations

The performance of generalised Born models is often assessed by comparing the

electrostatic component of solvation yielded by a GBmodel to Poisson-Boltzmann

(PB) calculations. PB calculations were also run on the dataset of small molecules

with the program APBS.122 We note, however, that when such comparisons have

been made, the dielectric boundary in the twomodels is usually not the same.116,118

Since PB results are quite sensitive to the definition of the dielectric boundary,

comparison between the two methods must be made with care. In this study, we

chose to compare the GB models to a PB model derived by Rankin et al. because

the PB models reported in that study have been optimised against the hydration

free energy of a dataset of small molecules compatible with the AMBER force

field.121 The set of models studied by Rankin consist of three parameters (ρ, Din,

α) which were systematically varied within a selected range. ρ is an offset to the

AMBER van der Waals radii, Din is the interior dielectric constant and α the sur-

face tension. We chose the model (ρ = 1, Din = 1, α = 0.0070 kcal.mol−1.Å−2)

because it gives good agreement against the experimental data used in their study,

has the same interior dielectric constant implied by the GB theory, and a surface

tension similar to our models. Note that the surface tension is not important be-

cause we are only interested in comparing the electrostatic component of solvation

between the GB and PB models. In their study, the radius of polar hydrogens is set

to 1.0 Å.

The following protocol was used for the PB calculations. The grid size was set
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Figure 2.1: Plot of the electrostatic component of solvation ∆Gpol computed by
Poisson Boltzmann calculations (PBrankin) and generalised Born calculations
(PDAnum1).

to 65x65x65 points, the spacing was 0.25 Å, and multiple Debye-Hückel boundary

conditions were used. The interior dielectric was set to 1.0, the exterior dielectric

set to 78.0. To ensure that the computed electrostatic energies were not sensitive

to the protocol, they were calculated for thirty random orientations of each small

molecule in the grid. This showed that the energies were accurate to within 0.1

kcal mol−1 for neutral compounds, and to within 0.4 kcal mol−1 for charged

compounds (data not shown).

The effective Born radii computed by the generalised Born models were also

compared to the ‘perfect’ Born radii computed by the PB approach.123 The ‘per-

fect’ Born radius for an atom i in a molecule was derived by solving the PB equa-

tion where every atomic partial charge but the one on atom i was set to zero. The

‘perfect’ Born radius is then readily available through equation 2.1 where ∆GPB
pol is

the solvation energy derived by the PB calculation.

B
per f ect
i =−

1

2
(
1

εvac
−

1

εsolv
)

q2i
∆GPB

pol

(2.1)

The electrostatic component of the hydration free energies (∆Gpol) calculated

by the four GB models was compared to the values obtained by the Poisson Boltz-

mannmodel of Rankin121 (PBrankin). The average unsigned difference for PDAnum1,

PDAnum2, PDAexp1 and PDAexp2 is 1.08 kcal mol−1, 1.14 kcal mol−1, 1.08



CHAPTER 2. PARAMETERISATION AND VALIDATION OF A

GENERALISED BORN SURFACE AREA MODEL OFWATER 49

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

born radius difference / Å

0

100

200

300

400

N
um

be
r 

of
 A

to
m

s

PDAnum1
PDAnum2
PDAexp1
PDAexp2
FDGB

Figure 2.2: Distribution of the difference between the effective Born radii com-
puted with the different generalised BornModels and the ‘perfect’ Born radii given
by Poisson Boltzmann calculations.

kcal mol−1 and 1.26 kcal mol−1 respectively. Thus, these models show roughly

equal differences with respect to the PB calculations. As an illustrative example,

figure 2.1 plots the electrostatic component of solvation of each compound in the

dataset obtained with PDAnum1 against the results obtained with PBrankin.

To determine how much of this difference is caused by the Pairwise Descreen-

ing Approximation, the same calculation was performed with the GB model that

employs the numerical integration scheme to compute the effective Born radii (re-

ferred in the text as FDGB). The average unsigned difference is 1.01 kcal mol−1.

Thus, the PDA is only responsible for a moderate amount of the discrepancy be-

tween the PB and GB results.

Figure 2.2 is a plot of the deviations between the ‘perfect’ Born radius de-

rived with PBrankin and the effective Born radius computed with the GB models

for the entire dataset. FDGB comes closest to the perfect Born radii because it

uses a more accurate scheme to compute the effective Born radii. PDAnum1 and

PDAnum2, essentially indistinguishable on this plot, are more noisy and show

larger deviations. PDAexp2 shows the largest deviations and a tendency to over-

estimate the effective Born radii. On a few occasions the deviations are very large

for PDAexp1 and PDAexp2 (greater than 1 Å). Thus a seemingly uniform level of

agreement with the PB calculations hides a different behavior in the computation

of the effective Born radii for the various GB models.
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Table 2.5: Polarisation energy (∆Gpol)
and hydration free energy (∆Ghyd) of

octafluoropropane in kcal mol−1

Model ∆Gpol ∆Ghyd Errora

PDAnum-1 -2.08 0.06 4.24

PDAexp-1 +1.94 4.33 0.03

PDAexp-2 +2.27 4.67 0.37

FDGB -2.13 0.01 4.29

PBrankin -2.18 -0.04 4.34

a against the experimental hydration
free energy of octafluoropropane (+4.30

kcal mol−1, taken from ref118)

Table 2.6: Effective Born radii of every atom in octafluoropropane

calculated by the different models (in Å)

Atom PDAnum1 PDAexp1 PDAexp2 FDGB PBrankin

CT 2.54 3.61 4.04 2.49 2.49

CT 2.84 4.15 4.73 2.61 2.62

CT 2.54 3.61 4.04 2.49 2.51

F 2.09 2.69 2.88 1.95 1.96

F 2.11 2.71 2.91 1.96 1.97

F 2.03 2.53 2.67 1.90 1.90

F 2.14 2.81 3.03 1.96 1.97

F 2.14 2.81 3.03 1.96 1.96

F 2.10 2.70 2.89 1.95 1.97

F 2.10 2.70 2.89 1.96 1.97

F 2.03 2.53 2.67 1.90 1.95

It is somewhat surprising that the models that give the best agreement with

experimental observable are the most different from the PB calculations. The

presence of some very large deviations is also a source of concern. Their ori-

gin can be explained by the protocol employed during the parameterisation. A

good example is given by the compound octafluoropropane. Table 2.5 lists the

electrostatic component of solvation (∆Gpol), the predicted hydration free energy

(∆Ghyd), and the agreement with experiment. The experimental hydration free en-

ergy of octafluoropropane is difficult to reproduce because its large positive value

(+4.30 kcal mol−1, taken from ref118) cannot be recovered by the values of surface
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tension coefficients that are required for other groups of small molecules. Because

this free energy is the target value during the optimization process and PDAexp1,

PDAexp2 are free to adopt any set of parameters, they produce a hydration free en-

ergy in good agreement with experiment. This is achieved, however, at the cost of

a positive polarisation energy which is clearly unphysical. By contrast, PDAnum1

(PDAnum2 is identical to PDAnum1 for this particular compound) yields polarisa-

tion energies in good agreement with FDGB or PBrankin (and a large error against

experiment). The source of these differences is related to the very different effec-

tive Born radii that the GB models have computed. Table 2.6 clearly shows that

with PDAnum1, the effective Born radii are in good agreement with those com-

puted by FDGB which themselves are in very good agreement with the ‘perfect’

Born radii of PBrankin. PDAexp1 and PDAexp2, yield however very different ef-

fective Born radii.

2.3.5 Behaviour of the parameterised models in potential of

mean force calculations

Potentials of mean force for the association of various species were also computed

for the best models. Given that GBSA models are often used to perform simula-

tions of molecular complexes, the ability of these models to reproduce accurate

potentials of mean force is more important than their ability to predict solvation

free energies in good agreement with experiment.

Systems for which PMFs have been previously derived in the literature124–127

were selected so that comparison could be made. Quantitative agreement is not

expected because issues such as long range treatment of electrostatics, solvent

model and partial charges can lead to different results for the same system (see

ref128,129 for good examples). However, if the physics is adequately modelled, one

would expect broad agreement between the various solvation models. The selected

systems encompass a broad range of interactions (hydrophobic, aromatic, polar,

ionic).

To compute the PMFs, Metropolis Monte Carlo sampling39 was used and free

energy differences were computed using the Free Energy Perturbation Method
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(FEP)130 as implemented in the program MCPRO.131 The simulations were per-

formed at 298 K. Windows were positioned approximately every 0.2 Å along the

coordinate of interest. The number of moves used to equilibrate the system and col-

lect statistics depended on the system considered. For very simple systems such as

methane, each window was equilibrated for 1000 (1K) moves and data collected

for 10000 (10K) moves. For more complex systems where more internal degrees

of freedom have to be considered, each window was equilibrated for 10K moves

and data collected for 100Kmoves. For constrained PMFs, each window was equi-

librated for 5K moves and data collected for 50K moves. The number of moves

needed to converge free energy differences is much smaller than would be needed

in an explicit solvent simulation, since there are far fewer degrees of freedom.

Solvent moderated packing effects are usually not modelled by continuum sol-

vation models although it is possible to parameterise empirical models to obtain a

solvent separated minimum by means of a penalty related to the solvent volume

excluded by two approaching species.132 In this study, the continuum solvation

models only yield a contact minimum (CM).

Because our models PDAnum-1 and PDAnum-2 are very similar (they can only

differ on systems that involve nitrogen atoms of AMBER type N2, N3 or oxygen

atoms of AMBER type O2), PMFs involving PDAnum-2 were only computed

when the results would differ from those obtained with PDAnum-1.

Unconstrained PMFs, where all the internal degrees of the freedom but the re-

action coordinate are freely sampled, have been computed for a methane pair, a

benzene pair and a N-methylacetamide (NMA) pair. The results can be compared

with previous work from the Jorgensen group.124–126 The remaining PMFs have

been computed by constraining the pair of molecules in a defined orientation. The

systems selected are amino acids side chains. PMFs for these systems have been

computed by Masunov127 with the CHARMM36 force field using a generalised

Born model,133 the EEF1 solvation model134 and a primitive electrolyte model

(similar to a vacuum simulation with ε set to 80). The results were compared to

those obtained with the Spherical Solvent Boundary Potential (SSBP) hybrid sol-

vation model developed by Beglov and Roux.135
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Methane pair

This PMF is a test case for hydrophobic interactions. Because the polarisation term

is negligible for this compound, the solvent effects are only due to the surface area

dependent term. The (all atom) molecules are kept rigid. A very small amount of

sampling over each window is required to converge the free energy differences.

We report here PMFs generated with 1K moves for equilibration and 10K moves

for collection. By contrast, Jorgensen et al.124 have carried out a simulation on this

system (united atom) with explicit solvent and used 500K moves for equilibration,

followed by 2M moves for collection. The PMF computed in vacuum and with a

GB/SA term are reported below on figure 2.3.

Figure 2.3: Potential of Mean Force Methane-Methane

A CM (Contact-Minimum) is present at a separation of 4.1 Angstroms. In vac-

uum, the well-depth is about -0.3 kcal mol−1 and arises from attractive Lennard-

Jones interaction. In solution, our various GB/SA models perform similarly with a

net attraction of around -0.80 kcal mol−1; this is because the surface tension term

does not vary much between the different models. Since the GB term is negligible

for methane, the energy change in solution is solely related to the change in SASA

and the association of the two species is favoured to reduce the total SASA of the

system. Jorgensen has computed a binding free energy of -0.42 +/-0.34 kcal mol−1

for that system. Thus our model is slightly more attractive. We note however, that

the hydration free energy of a single methane molecule is under-estimated with

our solvation models (between 1.1-1.2 kcal mol−1 instead of 2.0 kcal mol−1). If

our models predicted a more accurate solvation energy, the dimer would become

more stabilised.
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Benzene pair

This PMF has been computed along the distance of the centre of mass of each ben-

zene molecule. Our parameters for benzene are quite similar to the ones employed

in a study by Jorgensen et al.125 A Monte Carlo optimisation in vacuum reveals

that the global minimum is a roughly T-shaped dimer with a separation of 4.8 Å.

The interaction energy is -2.40 kcal mol−1. Jorgensen has found a slightly more

perpendicular configuration at a separation of 5.0 Å, with an interaction energy of

-2.31 kcal mol−1.

The PMF in vacuum and with our GBSA models for the association of two

rigid benzene molecules are reported below. For each window 11K moves were

performed and averaging was usually done on the last 10K.

Figure 2.4: Potential of Mean Force Benzene-Benzene

According to these results, the strength of the interactions between two ben-

zenes is stronger in water than in vacuum. This is expected because of the hy-

drophobic effect. However figure 2.4 shows that our solvation models exhibit more

marked differences than with methane. A CM is observed around 5.1-5.3 Å with

a well depth ranging from 1.2 to 1.6 kcal mol−1. In the study of Jorgensen a CM

at 5.5 Å with a well-depth of -1.5 kcal mol−1 was found. Jorgensen also noted

that integration of his computed PMF overestimated the association of benzene in

water according to experimental measurements.136

If the association was purely driven by hydrophobic forces, we would expect

the PMF in solution to be more stabilised by about 0.7 kcal mol−1 than in vac-

uum, because of the difference of SASA for the two separated species, and the
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dimer at the CM (difference of 100 Å−2 with a surface tension of around 0.007

kcal mol−1.Å−2). This is almost the case with PDAexp1 and PDAexp2, but in

PDAnum1, as the two species get closer, the GB term becomes more positive, re-

ducing the amount of stabilisation due to the reduction of SASA. This is expected

as the dimer exhibits an attractive Coulombic attraction and part of the GB equa-

tion is anti-correlated with the Coulombic term. Benzene is expected to be able to

form weak-hydrogen bonds with water and desolvation would reduce its ability to

form these hydrogen bonds.137 The different behaviour of the solvation models is

caused by the different scaling factors for H and C. In PDAexp1 or PDAexp2, as

the two molecules get closer, the Born radii do not increase much, because the de-

screening influence of one atom is strongly reduced by the scaling factors. If there

are little or no variations in Born radii, then the GB term does not vary much, and

thus does not oppose the Coulombic attraction. With PDAnum1, larger variations

are seen because the scaling factors reduce less the descreening, causing ultimately

the PMF to be weaker.

Jorgensen predominantly observed around the CM a range of distorted T-shaped

pairs, including some roughly parallel stacked and displaced pairs. In the vicinity

of the CM with our GBSA models we tend to see more perpendicular T-shaped

pairs and rarely parallel stacked and displaced pairs. As noted before, at a short

distance of around 4 Å, where only face to face stacking is possible, the net in-

teraction is repulsive, even though the gas phase interaction energy is almost -2.0

kcal mol−1. This is because this conformation, configurationally restricted, is en-

tropically disfavoured.

N-methylacetamide N-methylacetamide

The association of two N-methylacetamide molecules (NMA) in solution is rep-

resentative of a polar interaction driven by the formation of a hydrogen bond at

short separation. This PMF was constructed by constraining the distance between

the centre of geometry of each molecule.. PMFs in vacuum and for the differ-

ent models are reported in figure 2.5. In vacuum the formation of a hydrogen

bond is favoured by approximately -4.5 kcal mol−1. In water this interaction is
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considerably reduced because formation of the hydrogen bond between the two

amides involve breaking hydrogen bonds with water. With TIP4P water,138 Jor-

gensen found no attraction between two NMAmolecules, which is consistent with

the experimental association constant.126 PDAnum-1 and PDAexp-1 show similar

variations and exhibit a CM at 4.7 Å with a well-depth of -0.8 kcal mol−1 and -1.0

kcal mol−1 respectively. PDAexp-2 varies similarly until about 5.2 Å where the

free energy drops until it finally exhibits a contact minimum (CM) at 4.7 Å with

a well-depth of -1.8 kcal mol−1.
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Figure 2.5: Potential of mean force NMA-NMA

From the average value of the total GBSA energy of the system at large separa-

tion, one can obtain the free energy of hydration of NMAwhich is reported in table

2.7. Note that this value can differ slightly from that predicted for the rigid model

of NMA used to parameterise the solvation models, because the NMA molecules

used in this simulation are flexible and the hydration energy is averaged over all

the configurations available to each molecule.

Table 2.7: Hydration free energy of N-

methylacetamide in kcal mol−1

Model Hydration free energy

PDAnum-1 -6.4

PDAexp-1 -7.0

PDAexp-2 -6.5

exp -10.1a

a from ref98

Table 2.7 shows that the three solvation models predict approximately similar
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hydration free energies. Note that error against experiment is large. Yet PDAnum-

1 and PDAexp-1 yield energies at the CM that are within 1 kcal mol−1 of the

results obtained by Jorgensen. Furthermore the error on the hydration free energy

cannot explain why PDAexp-2 is twice as attractive as the other solvation mod-

els. As noted in tables 2.2 and 2.3, the only difference between PDAexp-2 and

PDAexp-1 for this system are the scaling factors of N and O. Figure 2.6 shows

the average value of the Born radius of the polar hydrogen involved in hydro-

gen bonding at different separation distances. With PDAexp-2 when the hydrogen

atom comes into close contact with the oxygen atom of the other NMA molecule,

the PDA approximation significantly overestimates the value of the Born radius

for the hydrogen. This stabilises the hydrogen bonded configurations and causes

the attraction between the two NMAmolecules to increase. Since models that have

the same accuracy for the prediction of the free energy of hydration of NMA can

behave quite differently for the computation of free energies of interaction, this

suggest that parameterisation of continuum models solely against free energies

of hydration does not ensure a proper treatment of intermolecular interactions in

solution.
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Figure 2.6: Average Born radius of hydrogen bonded atom H

To determine the extent of the error on the computation of the Born radius for

the polar hydrogen involved in the hydrogen bond of the NMA dimer, a snapshot

representative of a hydrogen bonded configuration was extracted from one simu-

lation with a separation of 4.5 Å between the centres of mass of each molecule.

The Born radius of the polar hydrogen is computed using the previous solvation

models, and compared to the value of the Born radius found by the numerical inte-

gration method (eq 1.54) using the set of intrinsic Born radii appropriate for each



CHAPTER 2. PARAMETERISATION AND VALIDATION OF A

GENERALISED BORN SURFACE AREA MODEL OFWATER 58

solvation model.

Table 2.8: Born radius of the hy-
drogen bonded atom H in the N-

methylacetamide dimer in Å

Model PDA Numerical

PDAnum-1 1.8 1.9

PDAexp-1 2.0 2.0

PDAexp-2 3.2 2.1

The Born radii reported in table 2.8 shows that for models PDAnum-1 and

PDAexp-1, the PDA approximation reproduces fairly well the Born radius of the

polar hydrogen obtained with the numerical integration method (even though for

PDAexp-1 the scaling factors were not specifically derived to reproduce accurately

the Born radii), but PDAexp-2 shows a large error.

Glu- Arg+

In this PMF, the carboxylate group of the ionized glutamic acid side chain (Glu-)

and the guanidinium group of the arginine side chain (Arg+) are constrained to

lie in the same plane. The reaction coordinate is the distance between the carbon

atom in the carboxylate group of the glutamic acid and the carbon atom in the

guanidinium group of the arginine.
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Figure 2.7: Potential of mean force Glu- Arg+

Masunov reports a well-depth of -4.5 kcal mol−1 with the SSBP simulation.

The GB model from CHARMM is attractive by about -4.0 kcal mol−1. Figure 2.7

shows that all the solvation models exhibit a strong attraction. A CM is observed
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at 4.1 Å and the well-depth is -9.2 kcal mol−1 for PDAexp-2, -7.4 kcal mol−1

for PDAexp-1 and -7.6 kcal mol−1 for PDAnum-1. Interestingly, with PDAnum-

1 the well-depth can be reduced significantly by just changing the offset for the

parameter O2 from 0.88 to 0.85 and increasing the offset for the parameter N23

from 0.87 to 0.95. The resulting model, called PDAnum-2 yields an attraction

of -5.3 kcal mol−1 which is in closer agreement with Masunov results. It was

therefore decided to also compute PMFs involving AMBER atom types O2, N2 or

N3 with PDAnum-2. This illustrates that potentials of mean force can be used to

adjust parameters of continuum solvation models.

Glu0 Glu-

In this PMF, the functional groups of the neutral glutamic acid side chain (Glu0)

and the charged glutamic acid side chain (Glu-) are constrained to stay in the same

plane (head to head approach) and the reaction coordinate is the distance between

the two carbon atoms in each functional group.
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Figure 2.8: Potential of mean force Glu0 Glu-

Masunov reports a well-depth of -2.0 kcal mol−1 with the SSBP simulation.

The GB model from CHARMM is repulsive by almost 2.0 kcal mol−1 at the CM.

Figure 2.8 shows that our simulations exhibit different behavior. PDAnum-1 and

PDAnum-2 show no attraction, PDAexp-1 is attractive by about -1.6 kcal mol−1 at

4.0 Å. Results with PDAexp-2 appear unphysical. As the two molecules becomes

closer, the attraction increases very quickly. At a separation smaller than 4.5 Å the

free energy differences between neighboring windows becomes too large for the

results to be reliable.
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Figure 2.9 plots the average GBSA energy and the vacuum intermolecular en-

ergy between the two molecules. It shows that the increased attraction observed

in the PMF using PDAexp-2 is due to a sudden drop of the GBSA energy at short

separation (figure2.9b). Interestingly, this causes the simulation with PDAexp-2

to sample different configurations than those observed with the other simulations

at around 4-4.5 Å, as shown by the different values of the average vacuum inter-

molecular energy (figure 2.9a). The difference in behavior between PDAnum-2

and PDAexp-1 in figure 2.8 also seems to be due to the slightly decreasing GBSA

energy of PDAexp-1 at short separation (figure 2.9b).
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Figure 2.9: Glu0 Glu-: Average vacuum intermolecular and GBSA energies
(a) Average vacuum intermolecular energy (b) Average GBSA energy

The different behavior of the solvation models can be linked to the Born radius

of the polar hydrogen HO. Figure 2.10 shows that with PDAexp-2 the Born radius

of atom HO increases very quickly and tends toward infinity at short separation.

This large, unrealistic, increase in the Born radius is due to the large value of

the scaling factors of the nearby oxygen atoms, which increase their overlap with

atom HO. In this case, the Pairwise Descreening Approximation is a particularly

poor approximation which leads to these large errors. PDAexp-1 also sees a lesser

increase of the Born radius because of the value of the scaling factor for oxygens it

uses. This causes an increased attraction and fortuitously a better agreement with

the SSBP simulation from Masunov. PDAnum-1 and PDAnum-2, with a smaller

Born radius for HO, yield no attraction and are the most similar to the GBSA

model from CHARMM.
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Figure 2.10: Average Born radius of atom HO

As before, a snapshot was extracted from the simulations at a separation of

4.0 Å between the carbon atoms of the carboxylic/carboxylate groups. In table

2.9, the Born radius for HO computed with the PDA approximation was compared

with the Born radius obtained by numerical integration (eq 1.54).

Table 2.9: Born radius of the hy-
drogen bonded atom HO in the

Glu0 Glu- dimer in Å

Model Numerical PDA

PDAnum-1 1.7 1.7

PDAnum-2 1.7 1.7

PDAexp-1 1.9 2.8

PDAexp-2 1.8 14.3

PDAnum-1 and PDAnum-2 find values that match closely the Born radius ob-

tained by numerical integration because the scaling factors have been optimised

to correct for the systematic errors in the PDA approximation. PDAexp-2 and

PDAexp-1 show deviations because the scaling factors were not used to correct

the systematic errors of the PDA approximation, but were instead used to reduce

the error against the experimental hydration free energies.

Glu0-Glu0 pair

A PMF for the interaction of two neutral Glutamic acid side chains has been de-

rived for a coplanar approach. The C-C distance corresponds to the distance be-

tween the carbon atoms from each carboxy group.



CHAPTER 2. PARAMETERISATION AND VALIDATION OF A

GENERALISED BORN SURFACE AREA MODEL OFWATER 62

Figure 2.11: Potential of Mean Force Glu0 Glu0

Figure 2.11 shows that, apart from PDAexp-2 which exhibits a complete fail-

ure, all models exhibits a CM around 4.0 Å. The well depth is -3.6 kcal mol−1 for

PDAnum-1. and -5.7 kcal mol−1 for PDAexp-1. In the study by Masunov, a well-

depth of approximately -1.8 kcal mol−1 has been found. This suggest that our

model are too attractive. Quite interestingly, the PMF computed with the GBSA

model from CHARMM was found to be slightly repulsive. The origin of the failure

of PDAexp-2 is similar to the one observed in the potential of mean force between

Glu- and Glu0.

Arg+ Arg+ pair

Two possible orientations have been considered. In the first, the two guanidinium

moieties are constrained to stay in the same plane and the reaction coordinate is

the distance between the carbon atom present in the functional group.

Figure 2.12: Potential of Mean Force Arg+ Arg+ coplanar approach

All the PMFs on figure 2.12 are repulsive until about 6.5 angstroms. No CM

is really observed. The SSBP simulation of Masunov finds a CM at 4.6 angstroms
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with a well-depth of 0.0 kcal.mol−1. The GBSA model from CHARMM is similar

to ours but falls off with distance more quickly . It is repulsive by 2 kcal.mol−1 at

4.6 angstroms. The difference most likely arise from the different parameters for

the non-bonded interaction of the polar hydrogens of the guanidinium moiety in

AMBER (r* = 0.60 Angstroms) and CHARMM (r* = 0.22).

The two side chains can also approach each other in a stacked fashion which

has also been considered.

By analysing the PDB database, Soetens et al. have observed a stacked confor-

mation as the preferred mode of interaction between two hydrated arginine side-

chains when the C-C distance of the guanidinium groups is small (below 4 Å).128

The amount of stabilisation due to this interaction is controversial and Soetens re-

ports values ranging between -10.0 kcal.mol−1 and -2.7 kcal.mol−1, depending

on the water model used . Masunov reports a well depth of approximately -1.0

kcal.mol−1 for the SSBP simulation, but the solvent separated minimum (SSM)

that lies at about 6.5 angstroms is slightly deeper. Soetens noticed only a very

shallow SSM but argued that it could have been due to insufficient sampling. The

GBSA model of CHARMM yields a well-depth of -1.0 kcal.mol−1 at about 3.6

angstroms.

Figure 2.13: Potential of Mean Force Arg+ Arg+ stacked approach

The PMFs from figure 2.13 are quite sensitive to the solvation model. Stabil-

isation free energies ranges between -1.9 and -0.6 kcal.mol−1 approximately. We

note that, although the side chains were kept parallel, they were allowed to ro-

tate and the two hydrocarbons moieties could assume a parallel or anti-parallel

conformation, while Masunov kept the orientation fixed (anti-parallel).
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As noted above, quantitative comparison is difficult. We see however, that our

results agree with the analysis of Soetens: the stacked approach is clearly preferred

over the coplanar at short distance. Trends between stacked, planar and a third T-

shaped geometry are more complex at longer distance and could not presumably

be reproduced by a continuum model.

HisP Glu- pair

The system simulated is a protonated histidine (HisP) and a glutamic acid (Glu-)

side chain. The molecules are constrained in a coplanar approach and the reaction

coordinate is the distance between the δ nitrogen of the imidazole group and one

oxygen atom of the carboxylate group.

Figure 2.14: Potential of Mean Force HisP Glu- coplanar approach

Masunov reports a well-depth of about -1.0 kcal mol−1 at a CM of 2.8 Å with

the SSBP potential. The GBSA model from CHARMM is attractive by about -2.5

kcal mol−1. PMFs on figure 2.14 are more attractive, with well-depths between

-6.0 and -6.5 kcal mol−1. Since other PMFs including Glu- appears correct, the

stronger attraction is probably caused by the protonated Histidine.

HisD Glu- pair

The system simulated is a delta tautomer histidine (HisD) and a glutamic acid

(Glu-) side chain. The molecules are constrained in a coplanar approach and the

reaction coordinate is the distance between the δ nitrogen of the imidazole group

and one oxygen atom of the carboxylate group.
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Figure 2.15: Potential of Mean Force HisD Glu- coplanar approach

Masunov reports a well-depth of about -2.5 kcal mol−1 at a CM of 3.0 Å with

the SSBP potential. The GBSA model from CHARMM is attractive by about -1.0

kcal mol−1. Figure 2.15 shows that PDAnum1 and PDAnum2 comes closest to the

SSBP results with well depths of -3.2 and -2.8 kcal mol−1 respectively.

HisD HisE pair

The system simulated is a delta tautomer histidine (HisD) and a epsilon tautomer

histidine (HisE) side chain. The molecules are constrained in a coplanar approach

and the reaction coordinate is the distance between the δ nitrogen of the δ tautomer

of the imidazole group and the δ nitrogen of the ε tautomer of the other imidazole

group.

Figure 2.16: Potential of Mean Force HisD HisE coplanar approach

Masunov reports a well-depth of about -1.75 kcal mol−1 at a CM of 3.0

angstroms with the SSBP potential. The GBSA model from CHARMM is attrac-

tive by about -2.0 kcal mol−1. With our models, PDAnum1 comes closest to the
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SSBP results with a well-depth of -3.0 kcal mol−1.

HisP HisE pair

The system simulated is a protonated histidine (HisP) and a ε tautomer histidine

(HisE) side chain. The molecules are constrained in a coplanar approach and the

reaction coordinate is the distance between the δ nitrogen of the δ tautomer of the

imidazole group and the δ nitrogen of the ε tautomer of the other imidazole group.

Figure 2.17: Potential of Mean Force HisP HisE coplanar approach

Masunov reports a well-depth of about -2.0 kcal mol−1 at a CM of 3.0 Å with

the SSBP potential. The GBSA model from CHARMM is attractive by about -1.0

kcal mol−1. Figure 2.17 shows that PDAnum1 comes closest to the SSBP results

with a well-depth of -4.2 kcal mol−1.

HisP HisP pair

The system simulated is two protonated histidines. Here two possible approaches

have been considered. In the first one, the two imidazoles rings are constrained

to stay in the same plane. The reaction coordinate is the distance between the

δ nitrogen of the δ tautomer of the imidazole group and the δ nitrogen of the ε

tautomer of the other imidazole group.

As can be seen on figure 2.18 all the GBSA models exhibits litlle or no attrac-

tion. They are quite similar to the result Masunov reports for the GBSA model

from CHARMM. However the SSBP simulation exhibits a well-depth of -2.0

kcal mol−1 around 4.7 angstroms.
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Figure 2.18: Potential of Mean Force HisP HisP planar approach

The second considered approach is a stacking between the two rings. The re-

action coordinate is the distance between the centre of each imidazole ring.

Figure 2.19: Potential of Mean Force HisP HisP stacked approach

Masunov reports a SSM deeper (+0.0 kcal mol−1) than the CM (+1.0 kcal mol−1

at 3.8 Å).The GBSA model from CHARMM is entirely repulsive. Present models

behave quite differently, and yield well-depths of about -2.5 kcal mol−1 at about

3.8 Å (see figure 2.19).

Lys+ Glu- pair-coplanar

The molecules are constrained in a coplanar approach and the reaction coordinate

is the distance between the nitrogen of the amino group and the carbon of the

carboxylate group.

Masunov reports a CM at 3.2 angstroms with a well-depth of about -2.2 kcal mol−1.

The GBSA model from CHARMM exhibits a CM at 3.5 Å with a well depth of

-1.75 kcal mol−1. Our model PDAnum1is strongly attractive with a well-depth
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Figure 2.20: PMF Lys+ Glu- coplanar approach

of -3.1 kcal mol−1 and a CM at 3.2 Å. PDAnum2 yields a weaker well depth of

-2.4 kcal mol−1 in good agreement with the SSBP simulations. PDAexp1 is only

weakly attractive with a free energy at the CM of -0.8 kcal mol−1 while PDAexp2

exhibits a repulsive profile. The behavior of PDAexp1 and PDAexp2 is once again

linked to the large error on the Born radii of the polar hydrogen atoms of the lysine

moiety that are overlapped by the oxygen atoms of the glutamic acid moiety.

2.3.6 Cause of errors in the PMFs

Inspection of equation 1.55 reveals that the large errors in the computation of Born

radii for PDAexp-2 are not due to values greater than one for some scaling factors.

This is best illustrated using the simple scheme in figure 2.21.

Figure 2.21: Typical case of failure of the PDA

As explained before, when computing the effective Born radius of an atom i

of intrinsic Born radius αi, spheres of adjacent atoms j, k of radius S jα j and Skαk

are considered, where S j and Sk are scaling factor for the atom j and k of intrinsic
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Born radius α j and αk. If these products are such that the radius of spheres S jα j

and Skαk is significant compared to the distance between atoms j, k and i, the

spheres may have a significant overlap, here represented by the shaded area. Note

that this could also happen with an atom that has a large intrinsic Born radius and

a small associated scaling factor.

While this is well known, of particular interest in this case is that a fraction

of the overlap occurs very close to the centre of sphere αi. Because the amount

of descreening caused by atom j on atom i is related to the ratio of the volume of

atom j to the distance between atoms i and j raised to the fourth power,139 the error

due to the Pairwise Descreening Approximation will be large here.

In a recent study, Feig et al. have reported a comparison of the performance

of various GB models against PB models.116 The authors noted that a number of

GB models implemented in AMBER that use the Pairwise Descreening Approxi-

mation failed to provide solvation energies for some proteins because of the com-

putation of negative Born radii. It is quite possible that these errors were caused

for the reasons described here. Interestingly, an implementation of the method of

Qiu98 in CHARMM,133 also computed negative Born radii on a few occasions,

even though that method makes use of a ’close contact function’ that reduce the

radii of nonbonded atoms that are very close to atom i.

In a molecular simulation, because polar hydrogens usually have a small colli-

sion diameter, they are the most likely to come into close contact with polar atoms

in a fashion similar to figure 2.21, resulting in an overestimation of the Born ra-

dius of the polar hydrogen. Inspection of equation 1.55 easily shows that if the

contribution of neighboring atoms j to the effective Born radii of atom i is over-

estimated, the effective Born radii can become negative. Our implementation of

the Pairwise Descreening Approximation resets to αi any negative value of Bi, ex-

plaining why PMFs involving PDAexp-2 could be computed entirely, even when

some Born radii became negative.

A simple solution to reduce the risk of this occurring is to ensure that for one

atom, the product of its intrinsic Born radius by its associated scaling factor is not

larger than its van der Waals radius. In this fashion, overlaps such as those seen on

figure 2.21 will become unlikely because they will be associated with a repulsive
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non bonded energy. In practice, for the cases we have examined, we have found

that optimizing the PDA scaling factors against the polarisation energy obtained

by the numerical integration of the Born radii, along with offsets to the van der

Waals radii smaller or equal to one, does not lead to cases similar to figure 2.21.

Whether such situations could still occur in other systems, especially larger ones

involving deeply buried atoms, is unknown.

2.4 Conclusion

Molecular mechanics studies are often faced with the problem that most force

fields have been designed to study a limited class of molecules. As a result, pa-

rameters are often missing when one tries to study a new class of molecules. This

situation is undesirable if a large number of drug-like molecules are to be studied

by free energy simulations. By adopting a framework proposed in the literature,

the risk of such situation occurring has been greatly reduced. The General Am-

ber Force Field ensures that parameters will be available in the vast majority of

the cases, while the use of the AM1/BCC method to derive atomic partial charges

means that parameter generation will be fast and reliable.

To simplify the systems to be studied, the influence of the solvent is repre-

sented by a generalised Born surface area theory. A number of generalised Born

surface area solvent models using the Pairwise Descreening Approximation have

been derived by two different methods. In the first the scaling factors that are used

to compensate for systematic errors in the Pairwise Descreening Approximation

have been optimised along with all other parameters against experimental free en-

ergies of hydration of organic molecules. It is observed that the scaling factors

sometimes adopt values that appear unphysical but that compensate for the other

approximations in the generalised Born theory. With the second method, the scal-

ing factors are optimised so that they compensate only for systematic errors of the

Pairwise Descreening Approximation. The first method yields models that predict

the hydration free energy of organic molecules more accurately than with the sec-

ond method, explaining why this approach has been adopted in a number of pre-

vious studies.117,118 However, the effective Born radii computed by these models
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show larger deviations to the ‘perfect’ Born radii computed by Poisson-Boltzmann

calculations. Subsequently, when applied to the computation of potentials of mean

force, models derived with the first method sometimes fail to provide meaning-

ful results because of large errors in the computation of Born radii. Results also

show that good agreement with other PMF simulations reported in the literature

does not necessarily require a good prediction of experimental hydration free en-

ergies. Instead, variations of the intermolecular interaction energy terms must be

correctly balanced by variations of the GBSA solvation energy to yield a reliable

potential of mean force. Because variations of the GBSA energy are controlled

by the Born radii, it is essential that they are computed accurately. Therefore, ef-

forts in the parameterisation of GBSA models using an approximate method to

obtain Born radii should be directed toward an accurate computation of this prop-

erty and not solely the prediction of experimental solvation free energies. While

the computation of Potentials of Mean Force provide a stringent test of the qual-

ity of a generalised Born solvation model, comparisons against effective Born radii

computed by Poisson-Boltzmann calculations may also be helpful in quickly iden-

tifying problematic sets of parameters, as illustrated in this study. Because some

solvation models have been previously developed without considering these is-

sues,117,118 they should be further tested before being used to model the solvent

screening of intermolecular interactions. Finally, it appears that the errors due to

the PDA observed here can be reduced by ensuring that the product of the intrinsic

Born radius of one atom by its associated scaling factor is smaller than its van der

Waals radius. As a last note, while the set of parameters in the PDAnum series

are clearly better than those in the PDAexp series over the range of PMFs tested,

further modifications to the models may be needed to use them effectively in pro-

tein simulations because of the tendency of the PDA of Hawkins to under-estimate

the effective Born radii of buried atoms.123 Improvements over the PDA that deal

with this problem have been suggested in the literature and their integration with

the parameterised models reported here should be simple.140,141



Chapter 3

Efficient generalised Born models

for Monte Carlo simulations

“It is unworthy of excellent men to lose hours like slaves in the

labor of calculation which could safely be regulated to anyone else if

machines were used“

Gottfried Wilhelm von Leibniz

3.1 Introduction

One of the goals of the previous chapter was to parameterise a generalised Born

model to use it in Monte Carlo simulations of protein-ligand complexes. While

the generalised Born method is very efficient when used to represent solvent ef-

fects on small molecules, it quickly loses efficiency in the context of Monte Carlo

simulations. Methods that address this issue are discussed in this chapter.

3.2 Generalised Born in a Monte Carlo Simulation

GBSA is widely used in the context of molecular dynamics simulations. For exam-

ple, some interesting studies of GBSA molecular dynamics simulations of RNAs

are discussed by Sorin et al.142,143 while Felts et al. used GBSA molecular dy-

namics to study the potential of mean force of small peptides.105 To date, few

Monte Carlo GBSA simulations have been reported in the literature. The flexible
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docking algorithm of Taylor et al. uses Monte Carlo moves and a GBSA model of

water.17 The Concerted Rotation with Angles (CRA) algorithm of Ulmschneider

et al. uses novel Monte Carlo moves to fold peptides in a GBSA force field.144,145

While the treatment of small peptides with a Monte Carlo GBSA method is still

efficient compared to the explicit solvent alternative, or desirable in the case of

Monte Carlo protein backbone moves, the method quickly loses its appeal as the

system size increases. A Monte Carlo simulation of a biomolecule requires many

more moves than molecular dynamics time steps because only portions of the sys-

tem under study are updated at every move. Because most of the system does not

change coordinates, and the force field terms are usually separable, it is generally

sufficient to calculate only the change in energy of the part that has moved, which

is very efficient. However, inspection of equation 1.55 shows that the Born radius

of atom i depends on the position of every other atom j in the system. In turn, this

means that the pairwise energies from equation 1.52 have the same dependency.

As a result, the energy between atoms that did not move must be recomputed after

every Monte Carlo move and a full GB energy calculation must be performed after

every Monte Carlo move. For even a mid-sized protein the computational cost can

be very high. This is not a problem in a molecular dynamics simulation because

the total energy of the system is calculated after every step in any case.

The aim of this article is to introduce methods that can overcome the limita-

tions of a standard GBSA implementation within the framework of a Monte Carlo

simulation. This work is motivated by the availability of powerful Monte Carlo

methods such as concerted rotations144 or configurational bias for sampling pro-

tein systems,146 and the efficiency that can be attained by combining them with a

GBSA model.

3.3 Implementing a generalised Born force field suit-

able for free energy calculations

In typical relative binding free energy calculations, one ligand is converted into a

closely related ligand. However, it is often the case that the two molecules do not

have the same number of atoms. In this case, it is necessary to introduce dummy
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atoms in one or two ligands such that one molecule can be converted completely

into the other. At one end state (λ = 0.0 or λ = 1.0), these atoms do not interact

at all with other particles, but they can be gradually transformed into interacting

particles, such that at the other end of the perturbation they are fully interacting

with the surrounding environment.

While dummy atoms at one end of the perturbation have zero charge, if their

Born radii Bi are also zero, then very near to the end of the perturbation, dummies

have a small but still substantial charge in a very small dielectric cavity. Such a

charge has a huge electrostatic energy and the presence of this would lead to en-

ergetic instabilities. Therefore, the minimum intrinsic Born radius of an atom was

set to 1.10 Å. This would mean that at the end states of a perturbation, dummy

atoms would be (incorrectly) displacing a portion of dielectric. To avoid this arte-

fact, dummy atoms are assigned a scaling factor of zero. As it can be verified by

inspecting equation 1.55, this means that when the Born radii of non dummy atoms

is calculated, the displacement of dielectric by a dummy atom is zeroed. When the

effective Born radii of the dummy atoms are calculated, the algorithm returns a

non zero value but since the charge on the dummy atom has been reduced to zero,

the dummy atom does not contribute at all to the generalised Born energy. In or-

der for the implementation to handle generic perturbations, the scaling factor and

offsets to the intrinsic Born radii are treated as force fields parameters and are thus

linearly interpolated between the end states of the perturbed system.

3.4 Selecting a test system and setup

In this work, the GBSA method was implemented in a modified version of the

Monte Carlo package ProtoMS2.1.147 Polarisation energies were computed using

equation 1.52 and the Born radii were calculated with equation 1.55. The Surface

Area calculations were implemented using the method of Shrake and Rupley148

and a probe of 1.4 Å radius was used. The parameter set used for this GBSA

model comes from a previous study (“PDAnum2” in this reference).100

To test the approximations introduced below we selected as a test case a set of

protein-ligand relative binding free energy calculations which are shown in figure
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3.1. The perturbations are typical of the mutations performed in a protein ligand

binding free energy calculation and cover apolar to apolar (1to2), polar to apolar

(1to3 and 4to5) and polar to polar (4to6) perturbations. The two different proteins

considered exhibit a very different binding site. Neuraminidase has a polar, solvent

exposed, binding site while cyclo-oxygenase-2 has a buried, fairly hydrophobic

binding site. The test case should therefore represent a broad class of protein-

ligand interactions that are studied by free energy perturbation methodologies.

The binding mode of the inhibitors was inferred on the basis of a similar ligand

complexed to a monomer of the N9 strain of influenza A (PDB code 1BJI)149 or

the PDB structure of murine COX-2 complexed to SC-558 (PDB code 1CX2).150

When necessary, hydrogens were added to the crystallographic structure using the

program reduce.151 Sugars, co-factors, crystallographic waters and ions were re-

moved. The protein was setup with the AMBER99 force field, inhibitors were

setup with the GAFF force field and the atomic partial charges were derived us-

ing the AM1/BCC method109 as implemented in the package AMBER8.112 The

system was energy minimised using the Sander module of AMBER8 and a gen-

eralised Born force field (the igb keyword was set to 1).112 The backbone of the

energy minimised protein was kept rigid for subsequent Monte Carlo simulation

which were conducted with a modified version of the ProtoMS2.1 package.147 To

reduce the computational cost, only the protein residues that have one heavy atom

within 15 Å of any heavy atom of the ligands were retained. The bond angles and

torsions of the protein side chains within 10 Å of any heavy atom of the ligand

and all the bond angles and torsions of the ligand were sampled during the sim-

ulation, with the exception of rings. The bond lengths of the protein and ligand

were kept rigid. The total charge of the system was brought to zero by neutralizing

lysine residues lying in the outer (frozen) part of the scoop (residues number 511

and 532 for COX-2, 432 and 273 for neuraminidase). The protonation state of the

histidines was decided by visual inspection of the crystallographic structures. The

resulting model of COX-2 had 155 residues and neuraminidase 145 residues. A

10 Å switched residue based cutoff was employed in all simulations. In the gen-

eralised Born simulations, a cutoff of 20.0 Å for the calculation of the Born radii
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was applied.

Replica exchange thermodynamic integration59,60 (RETI) was applied to these

systems and the necessary ensemble of states were formed using Metropolis Monte

Carlo sampling39 at a temperature of 25 ◦C. In the RETI protocol, standard finite

difference thermodynamic integration (FDTI)38 is performed at each value of the

coupling parameter λ (∆λ =0.001). Occasionally, moves that exchange system co-

ordinates between replica i at λ =A of energy EA(i), and replica j at λ =B of energy

EB(j) are attempted, subject to the RETI acceptance test described in chapter 1.

Figure 3.1: Representation of the ligands considered in this free energy study. For
visual emphasis, the parts of the ligands being perturbed are highlighted by bold,
straight lines.

Solute moves were attempted 10% of the time, with the remainder being pro-

tein side chain moves. In the unbound state, two thousand (K) moves of equilibra-

tion were performed before 200 K moves of data collection. In the bound state, the

system was pre-equilibrated at one value of λ for 600 K moves. The resulting con-

figuration was distributed over 12 values of the coupling parameter λ (0.00, 0.10,

..., 0.90, 0.95, 1.00) and further equilibration was performed for 100 K moves.

Data were collected over the remaining 900 K moves. Replica exchange moves

were attempted every 5 K configurations.
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The error on the free energy gradients was calculated by taking the standard

error of batch averages (size 1 K). The standard error of these averages was then

integrated over the λ coordinate to yield the maximum error.

The speed up reported in the next sections are calculated as ratios of the time

taken to complete a 1000 MC moves on the test systems between two particular

simulation protocols.

3.5 Approximated generalised Born Potential

A rigorous GB calculation means that the GB energy between all pairs of atoms

must be recalculated after every move. However, the impact of a moving atom

on the Born radius of a distant atom is small. We have therefore structured the

implementation of the GB calculation such that the energy of a pair of atoms is

recalculated only if the Born radius of either atom has changed by more than a

specified threshold value after a MC move. A large number of pair interactions

can be skipped in this fashion, resulting in a significant speed-up. In this imple-

mentation, only the necessary old and new GB energy pair terms are recalculated

to update the total GB energy. This keeps additional memory requirements low

and makes the method easily applicable to larger system.

This approximation may have unwanted effects. For example, the total energy

would not be completely conserved in a hypothetical Monte Carlo simulation in

the NVE ensemble. However, the fact that useful results can be obtained from

Molecular Dynamics simulations where fluctuations in the total energy are intro-

duced because of errors in the integrator suggests that as long as the impact of the

approximation is small, the resulting ensemble will closely mirror the correct one.

To assess the impact of this approximation, we have run series of short free

energy simulations with a GBSA force field at different values of the threshold

parameter. The plots reported in figure 3.2 are constructed by running a simulation

for N steps with a specified value of the threshold parameter. The total energy of

the last generated configuration is then recorded and compared to the value that

is obtained by calculating the total energy with no approximation. This procedure

is repeated ten times for a number of values of N. An arguably acceptable error
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on the total energy would be about 0.1 percent since this is in the accepted range

of MD integrator errors.37 The systems run in neuraminidase are more sensitive

to the approximation and at a high threshold value, the deviations become quickly

large. The systems run on COX-2 appear much less sensitive. In both systems, at

a threshold of 0.005 Å and up to 5000 MC moves the error is below 0.1 percent.
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(a) Perturbation 1to3, neuraminidase
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(b) Perturbation 4to5, COX-2

Figure 3.2: Relative error in percent of the total energy as a function of the number

of Monte Carlo moves for a threshold of 0.005 Å (black line, circles) and 0.05
Å (dashed line, squares). Each point is the average of ten different simulations
and the error bar represents the associated standard error. Similar plots for the
perturbations 1to2 and 4to6 are observed (data not shown).

An added requirement for a free energy calculation is that the free energy gra-

dients are not too sensitive to this approximation. In this application, we use a

finite difference scheme and the gradients are formed from the difference in total

energy at a value of λ - dλ and λ + dλ. In figure 3.3 the protocol described previ-
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ously is applied to report the free energy gradients accumulated at λ = 0.50. The

gradients are formed from the difference of two large numbers and are therefore

more sensitive to small errors in the total energies. The free energy gradients of

the perturbations run on neuraminidase are seen to be much more sensitive to the

threshold than those run on COX-2. Because the binding site of neuraminidase

is much more solvent exposed and comprises several polar amino acids, a rigor-

ous treatment of the GB energy appear more important than for COX-2, where the

buried, hydrophobic binding site is less sensitive to solvent effects. After 1000 MC

moves, at a threshold of 0.001 Å, the average error on the free energy gradients is

still 0.20 ± 0.07 kcal mol−1.λ−1 for 1to3, while for 4to5 it is essentially negligi-

ble at high and low threshold values. From a computational perspective, the cost of

a full GBSA calculation after 1000 approximate GBSA calculations is small. By

updating completely the GB energy every 1K MC moves and with a suitably small

threshold parameter, the errors on the total energy and the free energy gradients

can be kept sufficiently low such that they have a small or negligible influence on

the computed free energy.

To verify more rigorously the sensitivity of the systems to the threshold, a

series of GBSA free energy simulations are run for each system with a varying

threshold parameter. The impact of the threshold parameter on the calculated free

energy is shown in figure 3.4. For the perturbations in COX-2, the calculated free

energies are within the statistical error of the exact simulation over the range of

thresholds studied. For the perturbations in neuraminidase, the free energy is more

sensitive to the value of the threshold parameter and a high value of the thresh-

old yields results that deviate significantly from the rigorous calculations; this is

more marked for 1to3 than 1to2, with results agreeing to within statistical sam-

pling error from a threshold value of 0.002 Å or less. These results are consistent

with the increased sensitivity of the free energy gradients to the threshold for the

neuraminidase systems observed in figure 3.3. Figure 3.5 shows the speed-up rel-

ative to a full GBSA calculation. Because the computational expense is similar for

the systems run on the same protein, speeds up are shown for 1to3 and 4to5 only.

Even with a threshold as low as 0.001 Å, a considerable speed up is achieved

because the Born radii of several protein atoms are insensitive to the displacement
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(a) Perturbation 1to3, neuraminidase
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(b) Perturbation 4to5, COX-2

Figure 3.3: Absolute error in the free energy gradients as a function of the number

of Monte Carlo moves for a threshold of 0.001 Å (black line, circles) and 0.005
Å (dashed line, squares). Each point is the average of ten different simulations
and the error bar represents the associated standard error. Similar plots for the
perturbations 1to2 and 4to6 are observed (data not shown).

of a distant residue. On these systems and over the range of thresholds studied, the

simulations run 2.4 to 3.8 times faster.

On the range of systems studies here, the influence of the threshold parameter

on the calculated binding free energies has been shown to be negligible (COX-

2) or minor (neuraminidase) and can be minimised by reducing sufficiently the

threshold parameter, at the cost of additional simulation time. That a balance can

be struck between speed-up and accuracy can prove useful. In applications where

accuracy is important, almost rigorous calculations can be made with a sufficiently

low threshold. On the other hand, less accurate calculations that could be useful in

the context of fast free energy calculations could be run with a higher threshold.
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Figure 3.4: Influence of the threshold parameter on the calculated free energy for
the selected perturbations in the bound state. The error bars represents the associ-
ated statistical error.
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Figure 3.5: Relative speed up that can be achieved in the simulation of the pertur-
bations 1to3 (circles, black line) and 4to6 (squares, dashed line) in the bound state
with a varying threshold parameter. The speed up are based on the time taken to
perform 1K Monte Carlo moves.

The optimum value of the threshold varies according to the system, but can be esti-

mated rapidly by plotting the drifts in the free energy gradients for a series of short

simulations. From the systems studied here, it appears that a good compromise

would be achieved with a threshold of 0.002 Å or 0.005 Å.

3.6 Simplified Sampling Potential

3.6.1 Theory

A novel methodology to perform Monte Carlo simulations has recently been pro-

posed by Gelb.152 He shows that it is possible to perform a Monte Carlo simulation

in which the potential energy is evaluated using an approximate, less expensive po-

tential Eζ than a more realistic potential Eπ, and still form an ensemble of states
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that are distributed according to the rigorous potential. The method is very power-

ful as in principle any kind of simplified potential/expensive potential combination

can be devised.

The method can be briefly summarised as follow:

1. Start a simulation in state i

2. Performs N steps of standard Metropolis sampling with a simple potential

Eζ of limiting distribution ζ until a state j is reached

3. Set state i = state j with probability χ = (π jζi)/(πiζ j). In this equation πi

and ζi are the probability of state i in the two different distributions π and ζ.

4. Accumulate any property of interest that is a function of the coordinates of

state i

5. Return to 1 or terminate after a number of iterations

In essence, a standard Monte Carlo simulation is conducted for N steps with a

potential chosen for its convenience (usually computational efficiency). However,

because the probabilities of state i and j in the two distributions π and ζ generally

differ it is necessary in step three to correct for any bias introduced by the potential

Eζ. This acceptance test makes sure that the ensemble formed during the simula-

tion converges towards the distribution π instead of ζ. In the NVT ensemble, step

three amounts to accepting state j according to

exp

[

β

(

[Eπ( j)−Eπ(i)]− [Eζ( j)−Eζ(i)]

)]

≥ rand(0,1). (3.1)

The acceptance test is therefore based on the difference of the difference of en-

ergies of state i and j between the two potentials Eπ and Eζ. With this method, no

statistics for the target ensemble π can be collected during step two and the num-

ber of data points accumulated is reduced compared to a traditional Monte Carlo

simulation. This does not necessarily affect convergence because subsequent con-

figurations in a Markov Chain are typically highly correlated and do not contribute
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new information to the running average. That is to say, it is equally good to sam-

ple the distribution of interest less often if the samples are less correlated. The

methodology is described in figure 3.6.

Figure 3.6: The simplified sampling methodology. In a standard random walk con-
ducted with the Metropolis Monte Carlo algorithm, the successive generation of
trial moves converges the density of states towards the equilibrium distribution
π corresponding to the blue potential. The same results can be achieved by per-
forming a random walk with the red potential and periodically considering the
generated configurations, subject to the acceptance test χ, to calculate the thermo-
dynamic properties of the blue potential.

To date, applications of this methodology have been reported by Hetenyi et

al.153,154 (who seem to have developed a similar method independently). Hetenyi

reported a 3.0 to 4.7 speed up in the simulation of a Lennard-Jones fluid using for

Eζ a potential similar to Eπ but with a shorter cutoff. Gelb reported similar results

on a similar system.152 In a second application by Hetenyi, a MC Ewald sum

simulation of water was running 4.5 to 7.5 times faster using this methodology.

This method has been employed by Iftimie et al. to perform ab-initio simulations

using a classical potential.155

If the change of energy in going from state i to j is similar with the two Hamil-

tonians, the probability of accepting the configuration j will be close to unity. On

the other hand, if the two potentials differ too much, then the acceptance rate will

drop and the method will lose efficiency since all the steps performed with Eζ have
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been wasted. Therefore a good approximate potential Eζ must be faster than, and

yet very similar to Eπ. This is of course difficult to achieve.

3.6.2 Application to a GBSA model

The complete application of the GBSA theory requires the calculation of a Surface

Area (SA) dependent term to yield a solvation free energy. The inclusion of this

term can be expensive and becomes significant once the GB calculations have been

accelerated with the use of a threshold. For example, the simulation of 4to5 with

a GB threshold of 0.005 Å is about 1.8 times slower once the SA calculations are

enabled.

The fluctuations in the SA term are known to be small compared to the other

energy components of the force field. This observation has led other workers to

devise schemes where the SA term is only periodically updated.17,145,156 While

reasonable, this approximation is not completely rigorous. Other workers have

developed faster, approximate SASA calculations schemes, but these algorithms

do not calculate reliably the small changes in SASA associated with the small

conformational changes observed between MC moves.157

However, the effect of the SA term can be rigorously included in the GBSA

simulation by adopting a particular simplified sampling potential methodology.

The simple potential Eζ correspond to a GB simulation run without a SA term

while the correct potential Eπ includes SA calculations.

In addition, we consider other means to further speed up the calculations by

adopting a less rigorous solvation model for the simplified potential. Here two dif-

ferent simplified solvation models are investigated, a distance dependent dielectric

(DDD) force field and a simplified GB force field (fastGB). In the DDD force field

the GB equations are replaced by a ε(r) = 4r distance dependent dielectric. In the

fastGB force field smaller cutoffs are applied: a residue based cutoff, Born radii

cutoff and threshold of 6.0 Å, 12 Å and 0.05 Å respectively. In addition, since no

statistics are collected with fastGB, it is not necessary to compute free energy gra-

dients, which avoids the expensive GB energy calculations for the perturbed states.

The rigorous potential is taken as a GB simulation with a threshold of 0.005 Å and
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a rigorous SA calculation.

Table 3.1: Acceptance rate at the correction step and relative speed up
for different combinations of potentials and number of moves M with
the approximate potentiala

M DDD Rate b DDD Speed upc fastGB Rate b fastGB Speed upc

1to3

5 56.7 % 2.2 90.2 % 2.1

10 36.7 % 2.4 83.4 % 2.3

20 18.2 % 2.9 76.3 % 2.7

25 13.6 % 3.1 71.5 % 2.8

4to5

5 65.4 % 2.2 91.2 % 2.0

10 47.7 % 2.5 87.1 % 2.3

20 27.9 % 2.9 80.8 % 2.5

25 22.5 % 3.1 78.2 % 2.7

a The results for 1to2 and 4to6 are similar to 1to3 and 4to5.

b Average across all values of λ

c Relative to a GBSA simulation with a threshold of 0.005 Å

Table 3.1 lists the average acceptance rate of the correction step for the two

different potentials as a function of the number of moves performed. The speed

up compared to the rigorous GBSA simulation is also reported. The parameter M

is the number of moves performed with the quick potential before attempting to

add the generated configuration to the ensemble. As this quantity increases, the

acceptance rate diminishes. As has been pointed out, a tradeoff must be made

between computational efficiency and sampling efficiency.152

With the DDD model, the acceptance rate decreases faster than the speed up

increases, and a short value of M is favored. Even after only 5 steps, the acceptance

rate is only 55-65 %. For the systems in neuraminidase, the acceptance rate of the

correction step is actually similar to using vacuum conditions (data not shown).

This illustrate that the configurations favored by a GBSA force field are rather

different from those preferred by a DDD force field.

With the fastGB model the decrease in the acceptance rate is more or less

counterbalanced by the increase in speed up and no value of M is clearly favored.

In addition, the acceptance rates are much higher and around 90 % for M equal to
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5.

If we make the assumption that simulations run with the DDD and fastGB

force field explore the configurational space at the same rate, then these results

suggest that the combination of the two potentials fastGB/GBSA yields more effi-

cient sampling than the DDD/GBSA combination.

To demonstrate this more decisively, in figure 3.7 we investigate the conver-

gence of the calculated free energies in the bound state for 5 independent simu-

lations performed with the different protocols and a value of M set to 10. After

900K moves of data collection, almost all the fastGB simulations have converged

to within the error bounds of the results obtained with GBSA 0.005 Å. With the

DDD protocol, the results are more spread and several simulations are outside

the error bounds. It is apparent that the fastGB protocol converges better the free

energies than the DDD protocol for the same number of iterations.

Taken together, the results in table 3.1 and figure 3.7 suggest that a low accep-

tance rate for the correction step hinders convergence. The DDD simulations are

slightly faster than the fastGB simulations. However, since the simulation results

are much better converged with the fastGB protocol, it should be preferred over

a DDD model. By combining the fastGB potential with the value of M set to 10

and with a GBSA 0.005 Å potential described in the previous section, an approxi-

mately 2.3 fold speed up over a standard MC simulation run with GBSA 0.005 Å

can be achieved. The present results demonstrate that the simplified sampling po-

tential methodology, applied here to increase the efficiency of generalised Born

calculations for the first time, allows significant computational savings without

additional approximations.

3.7 Conclusion

A novel methodology by which free energy calculations in a generalised Born

framework can be made more efficient within Monte Carlo simulations has been

proposed. It can be summarised as:

1. An approximate generalised Born potential in which the energy of the sys-

tem is only partially updated after a MC move. The impact of this approx-
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Figure 3.7: The convergence of the calculated free energies in the bound state using
different sampling potentials. The estimated free energy is plotted as a function of
the number of Monte Carlo moves performed. In each figure, on the left hand
side, 5 independent simulations run with fastGB are shown. On the right hand
side, 5 independent simulations run with DDD are shown. The horizontal line
is the estimate of the free energy obtained after 900K moves with the potential

GBSA 0.005 Å. The dashed lines represents the statistical error associated with
this number.

imation on the calculated free energies can be made arbitrarily small at the

expense of computational time by adjusting a single parameter.

2. Sampling driven by an inexpensive potential with a special Monte Carlo

acceptance test that removes any bias in the distribution introduced by the

cheap potential. This allows in addition the rigorous incorporation of surface

area calculations at a minimum computational cost.

In table 3.2 timings for various combinations of these approximations on two

of the four systems are reported. Protocol 4, which combines the two approxima-
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tions is seven to eight times faster compared to protocol 1 which would correspond

to a standard implementation of a GBSA force field. Protocol 4 is also only about

4.1-4.3 times slower than a simulation run in vacuum (protocol 5) which compares

favorably with the typical efficiency of molecular dynamics GBSA simulations.112

While the increased efficiency has been demonstrated on a free energy calculation,

improvements in standard MC simulations could be sought with the same method.

Table 3.2: Time required to complete a block of 1K moves for selected approximationsa

Protocol Solvation model Simplified Potential Time 1to3 Time 4to5

1 GBSA exact No 633.4 s 746.3 s

2 GBSA threshold 0.001 Å No 241.8 s 312.0 s

3 GBSA threshold 0.005 Å No 198.6 s 243.0 s

4 GBSA threshold 0.005 Å fastGB M=10 79.8 s 104.2 s

5 Vacuum No 19.5 s 24.1 s

a ProtoMS2.1 on a Pentium IV 2 GHz compiled with g77

It is important to recall that the loss of efficiency of the GBSA method when

employed to simulate large systems is not observed in molecular dynamics sim-

ulations. However, there are several reasons which render Monte Carlo simula-

tions in a GBSA force field desirable. First, the method allow the use of complex

Monte Carlo moves such as RETI,59 configurational biased,146 or concerted rota-

tions moves144 that enhance significantly configurational sampling. These features

are not available in a molecular dynamics simulation. Second, Monte Carlo sim-

ulations often yield converged free energies more efficiently. This is because the

contribution of several unimportant degrees of freedom to the ensemble averages

can be trivially removed by not sampling them. By contrast, molecular dynam-

ics would require methods such as SHAKE48 or positional restraints which add

overhead to the potential energy function evaluation.

We may ask whether or not the partial rigidity of the system and the simplified

treatment of solvation affects the accuracy of the calculated binding free energy.

The simulation results can be compared with experimental figures by constructing

a thermodynamic cycle, which requires the ligand perturbations in the unbound

state to be performed. We stress that free energy calculations in the unbound state
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are extremely rapid (on the order of a few minutes) and there is no need to intro-

duce the methods developed to speed up the simulations in the bound state. The

calculated binding free energies are listed in table 3.3. The implicit solvent pro-

tocol reproduces well the relative binding free energy of 1to3 but underestimates

somewhat the binding free energy of the three other systems, although the trends

are respected.

Table 3.3: Calculated and Experimental Binding Free Energies of
the tested systems with the ApproxGB+SA protocola

Perturbation ∆∆Gexp ∆∆Gbind ∆Gprot ∆Gwat

1to2 -1.6 -0.3 ± 0.3 0.1 ± 0.2 0.4 ± 0.1

1to3 -2.7 -2.7 ± 0.3 24.5 ± 0.3 27.2 ± 0.2

4to5 < -4.6 -2.4 ± 0.1 17.7 ± 0.1 20.1 ± 0.1

4to6 < -5.6 -3.1 ± 0.2 10.0 ± 0.2 13.1 ± 0.1

a The threshold was set to 0.005 Å. The figures are in kcal mol−1.

The experimental figures were taken from ref78 for the neu-

raminidase inhibitors and from ref58 for the COX-2 inhibitors.

The main emphasis of this chapter was to introduce a novel methodology to

perform generalised Born Monte Carlo free energy calculations efficiently. A thor-

ough investigation of the influence of the solvation model on the relative binding

free energies will require the comparison of explicit and implicit solvent simu-

lations on a larger set of systems. Such studies will be reported in the following

chapters.



Chapter 4

Application to a protein-ligand

system : cyclooxygenase-2

“Certainly no subject or field is making more progress on so many

fronts at the present moment, than biology, and if we were to name

the most powerful assumption of all, which leads one on and on in

an attempt to understand life it is that all things are made of atoms,

and that everything that living things do can be understood in terms of

jigglings and wigglings of atoms.”

Richard P. Feynman

4.1 Introduction

The application of generalised Born free energy techniques to the prediction of

the relative binding free energies of a series of cyclooxygenase-2 (COX-2) selec-

tive nonsteroidal anti-inflammatory drugs is explored. The enzyme COX-2 was

selected as a test case because its relatively hydrophobic, buried binding site pro-

vides a mean to assess the ability of a generalised Born model to treat properly the

desolvation of the ligand and binding site. Simulation results are systematically

compared to explicit solvent simulations performed with the same system setup

and force field, typical empirical scoring functions and results published in the

literature.
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4.2 Presentation of the system

The enzyme cyclooxygenase is known to be responsible for the cyclooxygena-

tion of arachidonic acid to prostaglandin PGG2. PGG2 is involved in the biosyn-

thesis of numerous prostaglandins that possess analgesis, antipyretic and anti-

inflammatory activity. At least two isoforms of this enzyme, COX-1 and COX-2

exist.158 COX-1 is expressed in most cells and is thought to be responsible for the

the production of prostaglandins that provide gastrointestinal tolerability. COX-

2 only exist in inflammatory states. Traditional nonsteroidal anti-inflammatory

drugs (NSAIDs) (aspirin, ibuprofen) inhibit both enzymes and as a result show

ulcerogenic side effects. A second generation of NSAIDs has been shown to in-

hibit COX-2 selectively over COX-1.159 One of the drugs in that series, celecoxib

(compound 1), available commercially under the name of Celebrex, shows a 375-

fold selectivity of COX-2 over COX-1.160 Celebrex is prescribed for acute pain,

menstrual cramps, and the pain and inflammation of osteoarthritis and rheumatoid

arthritis. Recently, the Food and Drug Administration has announced that based

on preliminary studies from the National institute of Health, risks of cardiovas-

cular events may be increased in patients receiving Celebrex. Shortly after other

NSAIDs COX-2 selective inhibitors were removed from the market (Pfizer, valde-

coxib, marketed as Bextra and Merck, rofecoxib, marketed as Vioxx).

The binding site of COX-2 is a long hydrophobic channel extending from the

membrane region of the protein. A depiction of the interactions between impor-

tant amino acids in the binding site and the brominated analogue of celecoxib

compound 2 is presented in figure 4.1.

At the entrance of the channel the residues Arg120, Glu524, Tyr355 and Arg513

(bottom of figure 4.1) form a network of hydrogen bonds that acts as a gate to the

binding site. The sulfonamide group of the ligand extends into a relatively polar

pocket and makes interactions with Val523, Arg513, Gln192 and His90 (right cor-

ner of figure 4.1). The orientation of the sulfonamide group is ambiguous. Another

X-ray structure from reference150 shows the N-S-C-C torsion of the sulfonamide

group flipped by 180 degrees. This is not surprising as it is not possible to distin-

guish between oxygen and nitrogen atom in the electron density plots obtained by
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Figure 4.1: The binding site in the crystal structure of the brominated analogue

of celecoxib SC-558 complexed with mouse cyclooxygenase-2.150 The hydrogen
atoms on the amino acid sidechains and some residues mentioned in the text are
not shown for clarity.

X-ray crystallography. In the structure of figure 4.1 one of the oxygen atom of the

sulfonamide group makes unfavourable electrostatic interactions with the amide

carbonyl oxygen of Gln192 and the backbone carbonyl oxygen of Ser353 and one

hydrogen bond with an amide hydrogen atom is not formed. In the alternative con-

formation where the sulfonamide group is rotated, water molecules can donate an

hydrogen bond to the amide hydrogen atom and NH-O hydrogen bonds are formed

with Gln192 and Ser353. Free energy perturbation studies from Price et al. predict

this alternative conformation to be favoured over the conformation present in the

X-ray structure by over 4.5 kcal mol−1.58

The 5-aryl ring of SC-558 extends into a hydrophobic pocket on the top of fig-

ure 4.1 and makes hydrophobic contacts with Phe381, Leu384, Tyr385, Trp387,

Met522. The range of binding affinity of the series of inhibitors presented in ref-

erence159 is modulated by subsitution of the bromine atom in SC-558 by various

hydrophobic and polar substituents. The common scaffold of these inhibitors is

presented in figure 4.2. Their activity against COX-2 is shown in table 4.1.
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Figure 4.2: Structure of the series of celecoxib analogues.

Table 4.1: Experimental activity of a
series of celecoxib analogues against
COX-2

Compound R IC50 (µM)

1 CH3 0.040

3 CH2CH3 0.86

4 CH2OH 93.3

5 SCH3 0.009

6 OCH3 0.008

7 CF3 8.23

8 OH > 100

9 Cl 0.01

10 F 0.041

11 H 0.032

The range of measured binding affinities spans 5 orders of magnitude, from

low nanomolar to hundreds of micromolar. Hydrogen bonding (4, 8) and electron

withdrawing groups are shown to reduce binding affinity (7) for COX-2 while

electron-donating groups increase affinity (5, 6). Increasing steric bulk also de-

creases affinity (3).

From a computational perspective, the high structural similarity of the com-

pounds in this series and the large span of inhibition constants make this system

ideal for study by free energy simulation methodologies. Furthermore the features

of the binding site of COX-2 (buried, hydrophobic) make it an interesting test case
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for the generalised Born methodology.

4.3 System setup and simulation protocols

The PDB structure of murine COX-2 complexed to SC-558 was selected as a start-

ing point for this study (PDB code 1CX2). Hydrogen atoms had already been as-

signed by the crystallographers.150 Ligand 3 was modelled in the complex on the

basis of the binding mode of 2. As noted in the previous section, previous theoret-

ical studies and crystallographic evidences have pointed out that the sulfonamide

moiety of SC-558 in the crystallographic structure of 1CX2 has been misplaced.

The N-S-C-C torsion around this functional group was rotated to position it to in-

teract favourably with neigbouring residues. A nearby heme was removed as it is

not involved in any direct interactions with the binding site and its inclusion would

have required the derivation of AMBER parameters for the heme group. The pro-

tonation state of histidines was selected by visual inspection and resulted in the

assignment of δ-tautomers for His 90, 95, 133, 204, 207, 214, 226, 232, 242, 278,

309, 320, 351, 356, 386, 388 and 417. The protein was setup with the AMBER99

force field, inhibitors were setup with the GAFF force field and the atomic partial

charges were derived using the AM1/BCC method109 as implemented in the pack-

age AMBER8.112 The system was energy minimised using the Sander module of

AMBER8 and a generalised Born force field (the igb keyword was set to 1, which

corresponds to the default generalised Born force field in AMBER8).112 The back-

bone of the energy minimised protein was kept rigid for subsequent Monte Carlo

simulations which were conducted with a modified version of the ProtoMS2.1

package.147 To limit the computational cost, only the protein residues that have

one heavy atom within 15 Å of any heavy atom of compound 3 were retained. The

resulting protein scoop consisted of 155 residues. For the explicit solvent simula-

tions, the complex was hydrated by a sphere of TIP4P water molecules138 of 22 Å

radius and centred near the geometric centre of the ligand. To prevent evaporation,

a half-harmonic potential with a 1.5 kcal mol−1Å−1 constant was applied to wa-

ter molecules whose oxygen atom distance to the ligand centre of geometry was
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greater than 22 Å. A similar sphere of water was employed to solvate the ligands in

the unbound state. The bond angles and torsions of the protein side chains within

10 Å of any heavy atom of the ligand and all the bond angles and torsions of the

ligand were sampled during the simulation with the exception of rings. The bond

lengths of the protein and ligand were kept rigid. The total charge of the system

was brought to zero by neutralizing lysine residues lying in the outer (frozen) part

of the scoop (residues 511 and 532). A 10 Å residue based cutoff was employed in

all simulations. In the generalised Born simulations, a cutoff of 20.0 Å for the cal-

culation of the Born radii was applied. To increase the efficiency of the generalised

Born simulations, the techniques developed in chapter 3 were employed. In par-

ticular, a threshold of 0.005 Å to the recalculation of the Born energy was applied.

A simplified sampling potential with a residue based cutoff, Born radii cutoff and

threshold of 6.0 Å, 12 Å and 0.05 Å respectively was adopted and generated con-

figurations were considered for the calculation of thermodynamic properties every

10 steps of this potential. A series of perturbations that transform one ligand into

another in the series of celecoxib analogues was devised. In some instances, there

is uncertainty as to how the substituent R should be positioned in the binding site.

In this situation, observations from Price et al.58 were used to model the ligand in

the correct conformation.

Replica exchange thermodynamic integration59 was applied to these systems

and the necessary ensemble of states were formed using Metropolis Monte Carlo

sampling39 at a temperature of 25 ◦C. For the explicit solvent simulations in the

bound state, solvent moves were attempted with a probability of 85.7%, protein

side chain move with a probability of 12.8% and solute move with a probabil-

ity of 1.4%. In the unbound state, solvent moves were attempted 98.4% of the

time. Preferential sampling was used to increase the convergence of the calcu-

lated free energy.40 The solvent was equilibrated for 20 million (M) configurations

to remove any repulsive contact with the solute(s). The system was then equili-

brated in one end state (typically corresponding to the largest ligand) for 20M

further moves where solute, protein and solvent moves were attempted. The re-

sulting configuration was distributed over 12 values of the coupling parameter
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λ (0.00,0.10,...,0.90,0.95,1.00) and equilibrated for 10M moves before collecting

statistics for 30M moves. In addition to the standard set of moves, replica exchange

moves were attempted every 200 K configurations.

In the implicit solvent simulations, solute moves were attempted 10% of the

time, with the remainder being protein side chain moves. In the unbound state, two

thousand (K) moves of equilibration were performed before 200 K moves of data

collection. In the bound state, the system was pre-equilibrated at one value of λ

for 600 K moves. The resulting configuration was distributed over the 12 values

of λ and further equilibration was performed for 100 K moves. Data was collected

over the remaining 900 K moves. Replica exchange moves were attempted every

6 K configurations.

The error on the free energy gradients was calculated by taking the standard

error of batch averages (size 3 K for the implicit solvent simulations in the bound

state, 2 K in the unbound state and 200 K for the explicit solvent simulations in the

bound and unbound state). The standard error of these averages was then integrated

over the λ coordinate to yield the maximum error. This method will overestimate

the statistical error, but the statistical error typically underestimate the precision of

a free energy calculation.

The celecoxib analogues were also scored using common empirical scoring

functions available in the literature. The program GOLD12 was used to obtain

scores with the scoring function Goldscore,21 Chemscore19,20 and Astex Statisti-

cal Potential (ASP).22 The compounds were scored on the basis of the modelled

binding mode in the energy minimised crystallographic structure of COX-2 used

in the free energy study. To avoid artifacts due to use of a different force field,

the ligands were locally minimised according to each scoring function, prior to

scoring.

4.4 Explicit solvent simulations results

The calculated relative binding free energies with the explicit solvent protocol for

the series of celecoxib derivatives are shown in table 4.2. The results are in good

agreement with the experimental data.
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Table 4.2: Comparison between experimental and calculated relative binding free energies and rela-
tive solvation free energies with the explicit solvent protocola

Pert Expb ∆∆Gbind ∆∆Gsolv ∆Gprot ∆Gwat ∆Gvac

1t3 1.82 2.24 ± 0.36 0.58 ± 0.26 3.56 ± 0.27 1.32 ± 0.24 0.74 ± 0.09

4t3 -2.78 -2.18 ± 0.45 6.93 ± 0.38 0.8 ± 0.26 2.98 ± 0.37 -3.95 ± 0.09

1t7 3.16 3.9 ± 0.25 0.39 ± 0.24 20.71 ± 0.11 16.81 ± 0.23 16.42 ± 0.07

8t1 < -4.64 -2.9 ± 0.37 4.39 ± 0.35 15.03 ± 0.15 17.93 ± 0.34 13.54 ± 0.08

8t9 < -5.46 -3.49 ± 0.31 5.20 ± 0.29 17.12 ± 0.11 20.61 ± 0.29 15.41 ± 0.02

10t9 -0.84 -1.33 ± 0.18 -0.08 ± 0.16 -0.19 ± 0.08 1.14 ± 0.16 1.22 ± 0.01

11t10 0.15 0.01 ± 0.17 0.95 ± 0.16 -3.47 ± 0.05 -3.48 ± 0.18 -4.43 ± 0.02

11t8 > +4.77 1.66 ± 0.29 -4.49 ± 0.27 -21.47 ± 0.10 -23.13 ± 0.27 -18.64 ± 0.02

3t5 -2.7 -1.7 ± 0.44 -0.46 ± 0.34 -3.19 ± 0.36 -1.49 ± 0.26 -1.03 ± 0.22

5t6 -0.07 -1.75 ± 0.52 -1.18 ± 0.64 -6.56 ± 0.38 -4.81 ± 0.36 -3.63 ± 0.53

8t6 < -5.59 -3.68 ± 0.75 4.03 ± 0.73 9.35 ± 0.39 13.03 ± 0.64 9.00 ± 0.35

a Figures in kcal mol−1. XtY means that compound X was perturbated into compound Y. ∆∆Gbind is
the relative binding free energy. ∆∆Gsolv is the relative solvation free energy. ∆Gprot is the free energy
difference in the protein environment. ∆Gwat is the free energy difference in the aqueous environment.
∆Gvac is the free energy difference in vacuum.

b Relative free energies are calculated using the formula ∆∆G= ∆G2−∆G1 = RTln(K1/K2) with the

approximation that the ratio of the IC50 is equal to the ratio of the dissociation constants.161

Two different cycles were closed for the binding free energies and solvation

free energies and the resulting hysteresis is shown in figure 4.3. The hysteresis is

low in both cases, particularly if we consider that the cycles involve 4 or 5 steps.

This indicates that the simulation results should be well converged.

Table 4.3 shows the free energy difference of the ligands with respect to com-

pound 1 (celecoxib). The mean unsigned error (MUE) is found to be 0.76 kcal mol−1.
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Figure 4.3: Explicit solvent protocol: closure of two thermodynamic cycles for the
calculated relative binding (blue) and solvation (red) free energies of the celecoxib
analogues. All the figures are in kilocalories per mole.

Table 4.3: Explicit solvent protocol: the experimental and calculated binding free
energies with respect to celecoxib 1.a

Compound Perturbation pathwayb Calc ∆∆Gbind Exptl ∆∆Gbind

6 [1t8+8t6] ; [1t3+3t5+5t6] -0.99 ± 0.81 -0.95

5 [1t3+3t5] 0.54 ± 0.57 -0.88

9 [1t8+8t9] -0.58 ± 0.48 -0.82

11 [1t8+8t9+9t10+10t11];[1t8+8t11] 0.99 ± 0.51 -0.13

1 0 0

10 [1t8+8t9+9t10];[1t8+8t11+11t10] 1.00 ± 0.51 0.01

3 1t3 2.25 ± 0.36 1.82

7 1t7 3.90 ± 0.25 3.15

4 [1t3+3t4] 4.42 ± 0.58 4.59

8 1t8 2.90 ± 0.37 4.63

a Figures in kcal mol−1.

b Figures obtained by summing free energy changes over different perturbations, and
in some cases, averaging over two different pathways.
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The free energy profiles for the transformation of 1 to 3 and 11 to 8 are shown

in figure 4.4. The free energy changes over the coupling parameter are seen to be

smooth. The free energy profile for the perturbation 1 to 3 indicates that growing

an extra methyl group is initially slightly favourable in the binding site of COX-2.

However, at around a λ value of 0.7 the free energy in the bound state increases

more rapidly than in the unbound state, and ultimately the ethyl analogue 3 is less

favoured than celecoxib 1. This reflects the steric restriction that the larger ethyl

group experiences in the binding site.

In the perturbation of the unsubstituted derivative 11 into a hydroxy group

compound 8, the free energy profiles in the protein, water and vacuum are very

similar until about λ 0.5 after which the free energy decreases rapidly in water

but somewhat less in the binding site, resulting in the hydroxy group being less

stable than the unsubstituted derivative. This difference is due to the inability of

the hydroxy group to donate its hydrogen bond in the binding site of COX-2. In

water this can of course be accomplished easily.
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Figure 4.4: Explicit solvent protocol: the change in free energy along the coupling
parameter. The solid line represents the change in COX-2, the dashed line repre-
sents the change in water and the dotted line represent the change in vacuum.

(a) Perturbation of 1 to 3 (b) Perturbation of 11 to 8

A useful way to analyse the predictive power of the explicit solvent simulations

is to calculate predictive indices for this series of compounds. The method of the

predictive indices has been proposed by Pearlman et al.28 to measure the ability of

a binding free energy prediction method to rank a series of inhibitors in their order
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of affinity. The predictive indices are calculated as follows:

PI =
∑ j>i∑iwi jCi j

∑ j>i∑iwi j
(4.1)

with

wi j = |E( j)−E(i)| (4.2)

and

Ci j =−1 i f
E( j)−E(i)

P( j)−P(i)
< 0

= +1 i f
E( j)−E(i)

P( j)−P(i)
> 0

= 0 i f P( j)−P(i) = 0

(4.3)

Where E(i) is the experimental binding free energy of compound i and P(i) is

the predicted binding free energy (or some score) of compound i. This index ranges

from -1 to +1 depending on how well the predicted ranking matches the experi-

mental ordering. A value of +1 indicates perfect prediction, a value of -1 indicates

that predictions are always wrong and a value of 0 arises from predictions that are

completely random. The predictive index method essentially considers each pair

of compounds i and j in turn. Large differences in binding free energies will have

a large weight wi j and successfully predicting which of the two compounds is the

most potent will provide a large positive contribution to the final PI. If i and j have

a small difference in binding free energy, an incorrect prediction of the most potent

binder will have a minor impact on the predictive index.

By applying equations 4.1 to 4.3 a predictive index of 0.96 is found for the ex-

plicit solvent simulations reported above. This is an excellent result, demonstrating

impressive predictions on this set of ligands. Figure 4.5 summarises the results of

the explicit solvent simulations. The coefficient of determination (calculated from

figure 4.5 and ignoring 1) has a value of 0.85 which suggests a respectable agree-

ment between experiment and theory.
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Figure 4.5: Summary of the explicit solvent protocol results. The binding free
energies are relative to compound 1.

The same set of compounds has been studied by Price et al.58 and comparison

of their results with ours is of interest to validate the current protocol. Price et

al.58 reported results in somewhat better agreement with experimental data, with

a mean unsigned error of 0.4 kcal mol−1 and a coefficient of determination of

0.96. The origins of the differences between the two studies most likely arise from

two factors. We have employed the AMBER9934 force field for the protein and

the GAFF107 force field with AM1/BCC atomic partial charges for the ligands.108

Price et al. used the OPLS/AA33 force field for the protein and the OPLS/AA

force field and CM1A atomic partial charges for the ligand.162 Another differ-

ence lies in the system setup. In our simulation, no water molecules were present

in the active site of COX-2 while, depending on the perturbation studied, one or

two water molecules were present in the simulations of Price et al. There is no

structural evidence supporting the presence of water molecules in this buried, hy-

drophobic binding site and Price et al. could not rule out the possibility that the

water molecule was an artefact of the procedure used to build the water cap in their

simulations. The experimental binding free energy difference between 10 and 11

is -0.15 kcal mol−1. In the mutation of 10 to 11 Price et al. reported a binding



CHAPTER 4. APPLICATION TO A PROTEIN-LIGAND SYSTEM :

CYCLOOXYGENASE-2 102

free energy of -1.24 kcal mol−1 in the presence of two water molecules in the

binding site. When a water molecule bridging interactions between the para sub-

stituent on the 5-aryl ring of the celecoxib derivatives and Met522 was manually

removed from the binding site and the calculation run again, a binding free energy

of +1.52 kcal mol−1 was found. The presence of water molecules in the bind-

ing site can therefore affect significantly the relative binding free energies. Our

simulation yield a binding free energy difference of -0.01 kcal mol−1, in good

agreement with experimental results.
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Figure 4.6: Results reported by Price et al.58

The results of Price et al. are reproduced in figure 4.6 for comparison. Their

results are clearly in more quantitative agreement with experiment than ours. It is

worth mentioning that the calculated predictive index is identical to ours, meaning

that our simulations predict the ordering of the ligands as well.

4.5 Generalised Born simulations results

The calculated relative binding free energies with the implicit solvent protocol for

the same series of perturbations is presented in table 4.4. The results are in reason-

able agreement with experimental data and match closely the trends observed with

the explicit solvent simulations. The free energy change in vacuum, necessary to
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calculate the relative solvation free energies, was taken from the figures reported

in table 4.2.

Table 4.4: Comparison between experimental and calculated relative binding free
energies and relative solvation free energiesa with the implicit solvent protocol

Pert Expb ∆∆Gbind ∆∆Gsolv ∆Gprot ∆Gwat

1t3 1.82 1.92 ± 0.31 0.36 ± 0.13 3.02 ± 0.30 1.10 ± 0.09

4t3 -2.78 -1.03 ± 0.23 7.87 ± 0.11 2.89 ± 0.22 3.92 ± 0.07

1t7 3.16 2.24 ± 0.18 -1.30 ± 0.11 17.36 ± 0.16 15.12 ± 0.08

8t1 < -4.64 -2.48 ± 0.19 6.55 ± 0.11 17.61 ± 0.17 20.09 ± 0.08

8t9 < -5.46 -3.07 ± 0.07 5.86 ± 0.03 18.20 ± 0.07 21.27 ± 0.02

10t9 -0.84 -1.15 ± 0.07 -0.38 ± 0.01 -0.31 ± 0.07 0.84 ± 0.01

11t10 0.15 -1.08 ± 0.05 0.16 ± 0.01 -5.35 ± 0.05 -4.27 ± 0.01

11t8 > +4.77 0.42 ± 0.07 -6.05 ± 0.03 -24.27 ± 0.07 -24.69 ± 0.02

3t5 -2.7 -0.94 ± 0.45 -1.18 ± 0.31 -3.15 ± 0.39 -2.21 ± 0.22

5t6 -0.07 -1.98 ± 0.68 -1.60 ± 0.76 -7.21 ± 0.41 -5.23 ± 0.54

8t6 < -5.59 -3.23 ± 0.54 4.05 ± 0.50 9.82 ± 0.40 13.05 ± 0.36

a Figures in kcal mol−1. XtY means that compound X was perturbated into com-
pound Y. ∆∆Gbind is the relative binding free energy. ∆∆Gsolv is the relative solvation
free energy. ∆Gprot is the free energy difference in the protein environment. ∆Gwat

is the free energy difference in the aqueous environment. ∆Gvac is the free energy
difference in vacuum.

b Relative free energies are calculated using the formula ∆∆G = ∆G2 − ∆G1 =
RTln(K1/K2) with the approximation that the ratio of the IC50 is equal to the ra-

tio of the dissociation constants.161

The closure of the same two cycles shown in figure 4.7 shows that the hys-

teresis is even lower than in the explicit solvent simulations. This is not entirely

surprising as the statistical error associated with individual generalised Born sim-

ulations is lower than for their explicit solvent counterpart. Most of this difference

arise from the unbound state as simulations in pure implicit water can sample

thoroughly all the degrees of freedom of the system more easily than in an explicit

solvent simulation.

Table 4.7 shows the free energy difference of the ligands with respect to com-

pound 1.
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Figure 4.7: Implicit solvent protocol: the closure of two thermodynamic cycles
for the calculated relative binding (blue) and solvation (red) free energies of the
celecoxib analogues. All the figures are in kilocalories per mole.

Table 4.5: Implicit solvent protocol: the experimental and calculated binding free
energies with respect to celecoxib 1.a

Compound Perturbation pathwayb Calc ∆∆Gbind Exptl ∆∆Gbind

6 [1t8+8t6] ; [1t3+3t5+5t6] -0.88 ± 0.72 -0.95

5 [1t3+3t5] 0.98 ± 0.55 -0.88

9 [1t8+8t9] -0.59 ± 0.20 -0.82

11 [1t8+8t9+9t10+10t11];[1t8+8t11] 1.84 ± 0.21 -0.13

1 0 0

10 [1t8+8t9+9t10];[1t8+8t11+11t10] 0.76 ± 0.21 0.01

3 1t3 1.92 ± 0.31 1.82

7 1t7 2.24 ± 0.18 3.15

4 [1t3+3t4] 2.95 ± 0.39 4.59

8 1t8 2.48 ± 0.19 4.63

a Figures in kcal mol−1

b Figures obtained by summing free energy changes over different perturbations, and
in some cases, averaging over two different pathways
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The results for the generalised Born simulations on this set of ligands are sum-

marised in figure 4.8. The MUE at 1.08 kcal mol−1 is higher than the one obtained

for the explicit solvent simulations and accordingly the coefficient of determina-

tion has dropped to 0.70. However the calculated predictive index stands at 0.96

and is identical to that obtained with the other protocols. Thus, while the predicted

binding free energies deviate more from their experimental figure, the ordering of

the compounds is as good as with the previous explicit water protocol.
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Figure 4.8: Summary of the implicit solvent protocol results. The binding free
energies are relative to compound 1.

It is interesting to compare the predicted solvation and binding free energies for

the generalised Born and TIP4P simulations. As can be seen in figure 4.9, there is

a strong correlation between the two protocols. In the case of the relative solvation

free energies, a coefficient of determination of 0.97 is obtained. It is known that

solvation free energies obtained by a generalised Born approach correlate very

well with the solvation free energies of small molecules calculated by explicit

solvent simulations.163 Here we demonstrate that this relationship still holds true

in the case of more complex, flexible molecules.

The correlation between the calculated binding free energies is lower and the

coefficient of determination is 0.92. This suggest that some aspects of solvation in

the protein complex are not captured similarly by the two simulation methods.
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Figure 4.9: The correlation between predicted solvation and binding free energies
by the explicit and implicit solvent simulation protocols.

(a) Relative solvation free energies (b) Relative binding free energies

The free energy profiles for the transformation of 1 to 3 and 11 to 8 are shown

in figure 4.10. The free energy changes over the coupling parameter follow similar

trends to those observed with the explicit solvent protocol (figure 4.4). The free

energy profile for the perturbation of 1 to 3 in implicit water is smoother and

somewhat different from the one observed in TIP4P water and the free energy

changes at intermediate values of the coupling parameter are different as well.

However, the double free energy difference at the end of the perturbation is almost

identical to the one obtained with the explicit solvent protocol.

In the perturbation of the unsubstituted derivative 11 into an hydroxy group

8 the main difference observed is that after a λ value of 0.50 the free energy in

aqueous implicit water decreases more rapidly than in the complex of COX-2,

resulting in ligand 8 being only modestly less stable than ligand 11. This trend is

also observed in the perturbation of 8 to 6, 8 to 1 and 8 to 9. This suggest that

compound 8 complexed with COX-2 is systematically more stable by about 0.50

to 1.00 kcal mol−1 in a generalised Born simulation than in an explicit solvent

simulation.

This observation is particularly interesting because in water, 8 is better sol-

vated in the implicit solvent simulations than in the explicit solvent simulations, as

evidenced by the calculated relative solvation free energies for the perturbations 8

to 1, 8 to 9 or 11 to 8 reported in table 4.4. Since the hydroxy substituent on 8 is
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Figure 4.10: Implicit solvent protocol: the change in free energy along the cou-
pling parameter. The solid line represents the change in COX-2, the dashed line
represents the change in water and the dotted line represents the change in vacuum.

(a) Perturbation of 1 to 3 (b) Perturbation of 11 to 8

transferred to an essentially hydrophobic pocket in the binding site of COX-2, one

would expect the generalised Born simulation to yield binding free energies that

disfavour more the binding of this compound than with the explicit solvent proto-

col. That this behaviour is not observed is due to the treatment of desolvation by

the algorithms employed to calculate the Born radii. In the binding pocket, small

regions of void exist between the hydroxy group of 8 and the protein side chains.

These regions of space are not occupied by water in the explicit solvent simula-

tions. In the generalised Born protocol however, these small regions are treated

by the Pairwise Descreening Approximation algorithm as regions of high dielec-

tric (ε = 78.5). As a result, the hydroxy group is still partially solvated even in the

binding site. This leads to the relative stabilisation of the polar hydroxy group with

respect to the other, less polar groups. This hypothesis is supported by the good

agreement in the relative binding free energy between 1 (methyl) and 3 (ethyl) be-

tween the two protocols, where the contribution of the generalised Born energy to

the solvation free energy is negligible compared to the influence of the non polar

term.

Artifacts in solvation due to the presence of small pockets of high dielectric

constant in the interior of proteins have been noted by other workers.140,141,164
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Here, we investigate a simple method that attempts to compensate for the im-

proper treatment of desolvation by the generalised Born approach. By visualising

the binding site of COX-2, we locate three small pockets of void that surround the

5-aryl group of the ligand and we position 3 spheres of radius 2 Å in each pocket.

(See Figure 4.11 for clarity) The spheres are assigned generalised Born param-

eters suitable for a carbon atom (more precisely, a scaling factor of 0.77 and an

offset to the van der Waals radius of 0.68). Other force field parameters (charge

and Lennard Jones well-depth) are set to 0. As a result the only impact of these

spheres on the simulation is that they displace a volume of dielectric. Because

these spheres make close contact with the parts of the ligands that are subject to

a perturbation they affect their Born radii which in turn changes the generalised

Born energy of the ligands. This protocol bears some resemblance to the method

proposed by Liu et al.165 to take into account the presence of small voids between

the ligand and receptor atoms.

Figure 4.11: A model of compound 8 in the binding site of COX-2 with the addi-

tion of three 2 Å radii spheres that cover approximately the small regions of void
left between the ligand and the pocket where the 5-aryl ring extends. Hydrogen
atoms on the amino acid side chains are not shown for clarity.
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Table 4.6 shows the results of the generalised Born simulations conducted in

the presence of these extra particles.

Table 4.6: Comparison between experimental and
calculated relative binding free energies with the
modified implicit solvent protocola

Pert Exp ∆∆Gbind
b ∆∆Gbind

c

1t3 1.82 2.00 ± 0.31 1.92 ± 0.31

4t3 -2.78 -2.96 ± 0.26 -1.03 ± 0.23

1t7 3.16 2.34 ± 0.17 2.24 ± 0.18

8t1 < -4.64 -3.07 ± 0.18 -2.48 ± 0.19

8t9 < -5.46 -3.74 ± 0.08 -3.07 ± 0.07

10t9 -0.84 -1.22 ± 0.06 -1.15 ± 0.07

11t10 0.15 -1.15 ± 0.05 -1.08 ± 0.05

11t8 > +4.77 0.99 ± 0.09 0.42 ± 0.07

3t5 -2.7 -1.27 ± 0.39 -0.94 ± 0.45

5t6 -0.07 -1.94 ± 0.41 -1.98 ± 0.68

8t6 < -5.59 -3.85 ± 0.36 -3.23 ± 0.54

a Figures in kcal mol−1

b Modified implicit solvent protocol

c Standard implicit solvent protocol

The closure of the thermodynamic cycle 8 to 9, 9 to 10, 10 to 11 and 11 to 8 is

0.38 kcal mol−1. The closure of the thermodynamic cycle 3 to 5, 5 to 6, 6 to 8, 8

to 1 and 1 to 3 is 0.43 kcal mol−1. These low figures suggest that the simulation

results can be interpreted with confidence.

Comparison with the results listed in table 4.4 shows that the perturbations in-

volving an hydroxy group are now less favourable for the hydroxy substituent by

1.93 kcal mol−1 (4 to 3), 0.59 kcal mol−1 (8 to 1), 0.67 kcal mol−1 (8 to 9)

and 0.57 kcal mol−1 (8 to 11). These changes are much larger than the standard

error associated with each figure and hence significant. The addition of the three

dielectric displacing particles has resulted in the destabilisation of the more polar

groups. This is because their effect is to increase the Born radii of the polar hy-

drogen and oxygen atom of compound 4 and 8. This results in a lowered solvation

energy for these compounds, effectively making their introduction into the binding

site less favourable. Note that the difference in binding free energy for the remain-
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ing perturbations between the two protocols is much lower and within the error

bars of each simulation. This is slightly unexpected as some perturbations exhibit

large differences in solvation free energy between the watercap and generalised

Born protocol. For example in the perturbation of 1 to 7 the solvation free energy

obtained with an explicit solvent protocol is 0.39 ± 0.23 kcal mol−1 and -1.30 ±

0.09 kcal mol−1 with the implicit solvent protocol. In the binding site of COX-2,

the relative binding free energy is 3.90± 0.25 kcal mol−1 with the explicit solvent

protocol and 2.24 ± 0.17 kcal mol−1 with the modified implicit solvent protocol.

Since it is easier to desolvate compound 7 from explicit water than for implicit wa-

ter, one would expect to find a lower binding free energy for this compound with

the explicit solvent protocol. However, the opposite is the case. Furthermore the

binding free energy of 1 to 7 is similar between the two modified generalised Born

protocols (the difference of 0.1 kcal mol−1 is within the statistical error). These

observations suggest that the comparison of the difference in solvation free ener-

gies between implicit and explicit solvent protocols does not always rationalise the

difference of binding free energies predicted by the two simulation methods. It is

worth mentioning that compound 7 contains three fluorine atoms and that this class

of compounds was identified as significant outliers during the parameterisation of

a generalised Born force field reported in chapter 2.

In figure 4.12 the correlation of the calculated binding free energies between

the explicit and modified implicit protocols is plotted. The correlation has in-

creased and the coefficient of determination is now 0.96 which is similar to the

degree of correlation observed between the solvation free energies calculated with

the two protocols.
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Figure 4.12: Correlation between the calculated binding free energies of the ex-
plicit solvent and modified implicit solvent protocol

Table 4.7: Modified implicit solvent protocol: the experimental and calculated bind-
ing free energies with respect to celecoxib 1.a

Compound Perturbation pathwayb Calc ∆∆Gbind Exptl ∆∆Gbind

6 [1t8+8t6] ; [1t3+3t5+5t6] -1.00 ± 0.71 -0.95

5 [1t3+3t5] 0.73 ± 0.55 -0.88

9 [1t8+8t9] -0.67 ± 0.21 -0.82

11 [1t8+8t9+9t10+10t11];[1t8+8t11] 1.89 ± 0.22 -0.13

1 0 0

10 [1t8+8t9+9t10];[1t8+8t11+11t10] 0.74 ± 0.22 0.01

3 1t3 2.00 ± 0.32 1.82

7 1t7 2.34 ± 0.19 3.15

4 [1t3+3t4] 4.96 ± 0.43 4.59

8 1t8 3.07 ± 0.20 4.63

a Figures in kcal mol−1

b Figures obtained by summing free energy changes over different perturbations, and
in some cases, averaging over two different pathways

Next we consider the agreement of the simulations with the experimental mea-

surements (table 4.7 and figure 4.13). The mean unsigned error is now 0.83 kcal mol−1,

the predictive index 0.96 and the coefficient of determination 0.79. It appears there-
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fore that a better treatment of desolvation has increased the quantitative accuracy

of the implicit solvent calculations, even though they remain, overall, slightly infe-

rior to the explicit solvent calculations. It appears that the PI method, while good

at assessing the ability to rank a set of inhibitors in their order of affinity, does

not discriminate between different protocols once they have reached a sufficiently

high accuracy. It is therefore important to characterise quantitative agreement with

other methods.

The modified generalised Born protocol is very simple as it only involves fill-

ing pockets of void with spheres. Improvements in relative free energy calculations

are observed because the spheres have been positioned close to the substituents

that are being perturbed. In principle, there are several pockets in the protein that

would need to be filled which could render the protocol cumbersome. Further-

more, in other binding sites, there might be a partial occupancy of a pocket by a

water molecule. The proposed protocol suffers thus from some limitations.

The results are summarised in figure 4.13.
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Figure 4.13: Summary of the modified implicit solvent protocol results. The bind-
ing free energies are relative to compound 1.
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4.6 Influence of protein flexibility

A significant difficulty in the calculation of protein ligand relative binding free

energy calculations arises from the sampling of the several protein and solvent de-

grees of freedom in addition to the ligand degrees of freedom. An implicit solvent

framework reduces such complexity, but the degrees of freedom of several protein

side chain must still be sampled. Here we consider the impact of such protein side

chains flexibility on the calculated binding free energies. A rigid model of protein

solvated in explicit water would not be feasible. This is because the simulation re-

sults would be heavily affected by the position and orientation of the surrounding

water molecules. In addition, the explicit solvent would restrict severely the config-

urations the ligand can sample, particularly for the simulation in the unbound state.

The simulation results would be dependent on the initial placement of the water

molecules, which is arbitrary. By contrast, in the crystal structure of a protein, the

position of the protein side chain is known with some precision. By adopting an

implicit model of water, no uncertainties associated with the orientation of water

molecules is introduced in the model.

In the following section, protein-ligand binding free energies were calculated

with the protein rigid and a generalised Born model of water. The simulation prop-

erties were averaged for only 300 K moves because the dimensionality of the en-

ergy landscape has been reduced to only the degrees of freedom of the ligand,

and faster convergence of the free energies is expected. No pre-equilibration was

necessary, and each window was equilibrated for 30 K moves before data collec-

tion. Because solute moves are more expensive on average than protein side chain

moves, the simulations were only about 1.5 times faster than the generalised Born

simulations with protein flexibility even though one third of Monte Carlo moves

were performed in total. The simulations were run in presence of the three solvent

displacing particles.



CHAPTER 4. APPLICATION TO A PROTEIN-LIGAND SYSTEM :

CYCLOOXYGENASE-2 114

Table 4.8: Comparison between experimental and
calculated relative binding free energies with a
rigid protein and the modified implicit solvent
protocola

Pert Exp ∆∆Gbind
b ∆∆Gbind

c

1t3 1.82 1.04 ± 0.22 2.00 ± 0.31

4t3 -2.78 -2.65 ± 0.21 -2.96 ± 0.26

1t7 3.16 3.27 ± 0.14 2.34 ± 0.17

8t1 < -4.64 -3.62 ± 0.15 -3.07 ± 0.18

8t9 < -5.46 -3.65 ± 0.15 -3.74 ± 0.08

10t9 -0.84 -1.57 ± 0.03 -1.22 ± 0.06

11t10 0.15 -1.48 ± 0.02 -1.15 ± 0.05

11t8 > +4.77 0.77 ± 0.07 0.99 ± 0.09

3t5 -2.7 -1.27 ± 0.36 -1.27 ± 0.39

5t6 -0.07 -1.58 ± 0.62 -1.94 ± 0.41

8t6 < -5.59 -4.74 ± 0.63 -3.85 ± 0.36

a Figures in kcal mol−1

b Modified implicit solvent protocol, no protein
flexibility

c Modified implicit solvent protocol, protein flexi-
bility

The closure of the thermodynamic cycle 8 to 9, 9 to 10, 10 to 11 and 11 to 8 is

0.17 kcal mol−1. The closure of the thermodynamic cycle 3 to 5, 5 to 6, 6 to 8, 8

to 1 and 1 to 3 is 0.69 kcal mol−1.

The figures are remarkably similar to the results obtained with protein flexibil-

ity. The perturbations exhibiting the biggest differences are 5 to 6, 1 to 3, 1 to 7

and 8 to 1.

The binding free energies with respect to celecoxib are shown in table 4.9.
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Table 4.9: Modified implicit solvent protocol and rigid protein: the experimental and
calculated binding free energies with respect to celecoxib 1.a

Compound Perturbation pathwayb Calc ∆∆Gbind Exptl ∆∆Gbind

6 [1t8+8t6] ; [1t3+3t5+5t6] -1.47 ± 0.72 -0.95

5 [1t3+3t5] -0.23 ± 0.43 -0.88

9 [1t8+8t9] -0.03 ± 0.17 -0.82

11 [1t8+8t9+9t10+10t11];[1t8+8t11] 2.94 ± 0.17 -0.13

1 0 0

10 [1t8+8t9+9t10];[1t8+8t11+11t10] 1.46 ± 0.17 0.01

3 1t3 1.04 ± 0.22 1.82

7 1t7 3.27 ± 0.14 3.15

4 [1t3+3t4] 3.69 ± 0.30 4.59

8 1t8 3.62 ± 0.15 4.63

a Figures in kcal mol−1.

b Figures obtained by summing free energy changes over different perturbations, and
in some cases, averaging over two different pathways.

When the perturbations are carried out with a rigid protein, the binding free en-

ergy of the bigger substituent like 3 or 5 is lowered by approximately 1 kcal mol−1

in both cases and 1.3 kcal mol−1 for 4. On the other hand the free energy of the

smallest substituents has increased, for 11 by 0.90 kcal mol−1, for 10 by 0.55

kcal mol−1, for 9 by 0.50 kcal mol−1. While this is not conclusive evidence, it is

tempting to argue that since the protein is rigid in these simulations, the motion of

the protein side chains in the binding site is not affected by the presence of bulkier

substituent. Thus there would be no penalty for growing a larger substituent into

the binding site, and conversely, it would not be as favorable to put a smaller sub-

stituent into the binding site. One could also have reasoned that in the absence of

protein flexibility, larger substituents are more likely to make bad contacts with

the protein side chains and hence be less stabilised. However, the protein ligand

system was prepared by energy minimisation of the the largest ligand, compound

3, complexed in the binding site. Thus there is ample room to fit all the ligands

from this series without incurring steric clashes with the protein. This could also

explain the trends in the increased/decreased binding affinity of the larger/smaller

compounds in this series. The mean unsigned error is 1.03 kcal mol−1 and the

predictive index is 0.93. These figures are a bit lower than those obtained when
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protein flexibility is enabled. This is not entirely surprising, as the present model

should be less realistic. However, the predictions are still of a very good quality,

and the associated reduction in computational expense could be worth the intro-

duction of such an approximation. The present results challenge the assumption

that receptor flexibility is necessary to obtain meaningful protein ligand binding

free energies. To emphasise this last point, for this series of compounds, a more

elaborate treatment of solvation has more impact on the binding free energies than

the inclusion of protein flexibility.

The results obtained with this simulation protocol are summarised in figure

4.14.
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Figure 4.14: Summary of the results with the modified implicit solvent protocol
and no protein flexibility. The binding free energies are relative to compound 1.

4.7 Computational cost and convergence

No specific rule dictated the choice of the number of Monte Carlo moves em-

ployed to calculate the free energy changes reported in the previous sections. It

is interesting to evaluate, a posteriori, the quality of the predictions as a function

of the amount of computational resources invested. This would also provide a fair

comparison of the implicit and explicit solvent protocol.
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In figure 4.15, the mean unsigned error between experimental and predicted

binding free energies relative to compound 1, is plotted as a function of the average

CPU time taken by one simulation performed at one value of λ. This represents

the shortest amount of time that one would have to wait to obtain a predictivity

plot, assuming enough CPUs are available to run all the perturbations simultane-

ously (in this case, 11 perturbations with 12 windows each, meaning 132 CPUs).

In addition, while simulations in the unbound state are very fast in the implicit

solvent simulations (about 20 minutes), they do take longer in the explicit solvent

simulations and their cost has to be considered. All the timings are based on the

time taken to complete a simulation on a 2.2 GHz AMD Opteron dual processor.
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Figure 4.15: The convergence of the mean unsigned error as a function of the time
taken to complete a single simulation at one value of λ.

Figure 4.15 shows that the mean unsigned error converges very quickly on this

system. For the explicit solvent simulations, stable results require about 10 hours

of simulation. The MUE of the implicit and modified implicit simulation protocols

does not evolve much after 5-7 hours of simulation. For the simulations conducted

with a rigid protein the MUE is stable after 2-3 hours.

The speed at which a good qualitative ranking can be obtained is measured

in figure 4.16. The set of values the predictive index can adopt for this set of

compounds is discrete, which explains the jumps in PI observed in this figure,

which occur when the relative binding free energy of one compound has changed

sufficiently such that it has become more or less stable than the two other closest
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Figure 4.16: The convergence of the predictive index as a function of the time
taken to complete a single simulation at one value of λ.

compounds in order of affinity. We observe that very little sampling is required to

obtain a high predictive index. All methods yield a PI greater than 0.90 after only

3 hours of simulation. The PI for the explicit solvent simulations is stable after

about 5 hours of simulation. This varies between 1 to 4 hours for the implicit and

modified implicit solvent simulations. The PI for the simulations conducted with

a rigid protein is essentially stable after 2 hours.

The following observations suggest that the protocols employed to calculate

the relative binding free energies have dramatically overestimated the number of

moves required to obtain stable predictions. It is likely that errors due to lack

of convergence of individual perturbations cancels out to some extent when the

results of several perturbations are used to build a predictivity plot, meaning that

reliable predictions can be obtained before all individual perturbations are fully

converged.

In a real-world situation, one would not know the experimental binding free

energies or ranking of the simulated compounds and the previous plots could not

be constructed to decide when sufficient sampling has been performed. It could

be possible however to plot the convergence of the closure of a thermodynamic

cycle as a function of time. In the limit of infinite sampling, and assuming all the

models used in the different perturbations are fully consistent, this quantity should

converge to zero. In practice, this quantity is likely to fluctuate around this figure
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once the results are reasonably converged.
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Figure 4.17: The convergence of the closure of the thermodynamic cycles as a
function of the time taken to complete a single simulation at one value of λ, in the
bound and unbound state. The straight lines are for the cycle involving compounds
8, 9, 10 and 11. The dashed lines for the cycle involving compounds 1, 3, 5, 6 and
8.

In figure 4.17, the convergence of the two closed cycles in this series is plotted

as a function of time. If we assume that the results are considered converged if the

closure for both cycles is under 1 kcal mol−1, then the explicit solvent simulations

would be considered converged after 8 hours, the implicit solvent simulations after

5 hours, the modified implicit solvent simulations 3 hours, and the implicit solvent

simulations with a rigid protein in under 1 hour. This metric is unlikely to be

perfect. For example, while the hysteresis is very quickly essentially 0 kcal mol−1

for both cycles with the rigid protein simulations, it increases to 0.7 kcal mol−1

after about 5 hours for one cycle. In the explicit solvent simulations, the hysteresis

for one cycle slowly decreases to 0 kcal mol−1 in 18 hours, but increases then to

finish at 0.5 kcal mol−1 at the end of the simulation.

4.8 Comparison with empirical scoring functions

Predictive indices for the series of celecoxib analogues have been computed using

the Chemscore,19,20 GoldScore12 and ASP energy function.22 The results are pre-

sented graphically in figures 4.18, 4.19 and 4.20. Since it is unclear how the scores
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predicted by these methods can be related to binding free energies, quantitative de-

scriptors such as the mean unsigned error or the coefficient of determination were

not calculated.

-2 0 2 4 6

Experimental ∆∆G / kcal.mol
-1

-2

0

2

4

6
S

co
re

CF
3

OH

CH
2
OH

CH
2
CH

3CH
3

F

H

OCH
3

Cl

SCH
3

PI 0.58

Figure 4.18: Chemscore: Calculated score and experimental binding free energy
of a series of celecoxib analogues. All the data is relative to compound 1

Chemscore performs reasonably and the predictive index is 0.58. The two high

micromolar inhibitors 4 and 8 have been discriminated from the other compounds

and the chlorinated substituent 9 is indeed found to be a more potent binder than

celecoxib 1. There is however no discrimination between the remaining com-

pounds and the thiol ether derivative, the second most potent binder in that series,

scores as the third worst, just below the hydroxy groups.

Goldscore performs very poorly on this set. While the ether substituent 6 has

been identified as the best binder, the thio ether 5 which has an almost identical

affinity is the predicted worst binder and lies off the scale of the plot. The PI is

actually negative which means that Goldscore rank these compounds worse than

a random ranking. This is essentially because the hydroxy groups score as well as

the best binders.

ASP shows no discrimination either and the trifluoro group is predicted to be

significantly better than any other group while it is actually a poor binder. The PI

of -0.44 indicates that the predicted rankings tend to be anti-correlated with the
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Figure 4.19: Goldscore: Calculated score and experimental binding free energy of
a series of celecoxib analogues. All the data is relative to compound 1. The nega-
tive of the Goldscore is plotted such that if the method can explain the variation of
the relative binding free energies, a positive correlation would be observed.

experimental ordering.

4.9 Conclusion

The relative binding free energies of a series of NSAIDs COX-2 specific ana-

logues of celecoxib have been calculated by means of explicit solvent (TIP4P)

and implicit solvent (generalised Born) free energy simulations. The results are in

good agreement with experimental measurements. The explicit solvent simulations

yield a mean unsigned error of 0.76 kcal mol−1 and a coefficient of determina-

tion of 0.85. The implicit solvent simulations yield a mean unsigned error of 1.08

kcal mol−1 and a coefficient of determination of 0.70. Predictive indices which

measure the ability of the predictions to rank the inhibitors according to their rela-

tive affinities are calculated for both methods. The very high values obtained (0.96

in both cases) validate the application of these methods to this system. Systematic

differences between the implicit and explicit simulation results are investigated

and it is shown that the origin of some of the differences lies in the incorrect treat-

ment of desolvation by the generalised Born algorithms employed in this study.
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Figure 4.20: ASP: Calculated score and experimental binding free energy of a se-
ries of celecoxib analogues. All the data is relative to compound 1, and the negative
of the score is plotted for reasons similar to the Goldscore method.

The elimination of small pockets of high-dielectric that surround the perturbed

part of the ligands yields a generalised Born model in better agreement with ex-

perimental results (PI 0.96, MUE 0.83 kcal mol−1, r2 0.79). While a method that

would treat desolvation correctly in a more general fashion has yet to be devised,

we demonstrate here that there is ample room for further optimisation of implicit

solvation methodologies on this system. The effect of keeping rigid the protein

environment while perturbating the ligands is then investigated. It is found that

the quality of the predictions is affected, but only to a small extent (PI 0.93, MUE

1.03 kcal mol−1, r2 0.67). The time necessary to obtain converged predictions

is then assessed a posteriori and it is found that high PIs can be obtained after

only 1 to 5 hours of simulation, even though the individual free energy differences

take longer to converge. Finally, the ability of commonly used empirical scoring

functions to rank these compounds correctly has been assessed by calculating pre-

dictive indexes for Chemscore, Goldscore and ASP. The obtained PI of 0.58, -0.26

and -0.47 are significantly lower and demonstrate the superiority of the free energy

method for the ranking of the inhibitors in this series against COX-2.



Chapter 5

Application to a protein-ligand

system : neuraminidase

“If it’s green or wriggles, it’s biology.

If it stinks, it’s chemistry.

If it doesn’t work, it’s physics.”

Handy Guide to Science

5.1 Introduction

The application of generalised Born free energy techniques to the prediction of

the relative binding free energies of a series of inhibitors of the influenza enzyme

neuraminidase is explored. Neuraminidase has a polar, solvent exposed binding

site and ligand binding involves several identified crystallographic bound waters.

It is therefore considered a challenging test case of implicit solvent methodologies.

In this chapter, simulation results are systematically compared to explicit solvent

simulations performed with the same system setup and force field, and typical

empirical scoring functions.

5.2 Presentation of the system

The common flu is a contagious respiratory illness caused by influenza viruses. It

can cause mild to severe illness, and at times can lead to death. There are three
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types of influenza viruses, designated influenza A, B and C and distinguished by

their different genetic sequences. The most severe flu in humans is usually caused

by type A influenza viruses. Each type of flu is divided into several subtypes, de-

pending on the type of the surface proteins hemaglutinin (HA) and neuraminidase

(NA) that are sticking through the viral envelope of the virus. There are 16 types

of HA, designated H1-H16 and 9 NA sub types, designated N1-N9. All of these

possible combinations of surface proteins are able to infect a variety of animals,

but so far, only those containing the H1, H2, H3, H5, H7 and H9 and the N1, N2

and N7 surface proteins infect humans, and of these, so far, only H1, H2, H3 and

N1 and N2 do so to any extent. Finer distinctions between subtypes are necessary

because influenza viruses mutate readily and within subtypes there may be many

genetic variants, called strains.166

Usually, ’avian influenza virus’ refers to influenza A viruses found chiefly in

birds, but infections caused by these viruses can occur in humans. The risk from

avian influenza is generally low to most people, because the viruses do not usually

infect humans. However, health autorithies worldwide are particularly worried by

the existence of a virulent H5N1 subtype of avian influenza virus that is being

spread over the world by diseased migratory birds. While the H5N1 avian virus

does not readily infect people, repeated exposure to infected birds or poultry can

cause infection, with a high mortality rate. Virologists fear that through repeated

exposures to humans, the H5N1 avian influenza will be able to mutate into a strain

that can be passed between humans. Because these viruses do not commonly in-

fect humans, there is little or no immune protection against them in the human

population and if the virus were to gain capacity to spread easily between humans,

a deadly influenza pandemic could occur, putting the lives of billions of people at

risk.166

Besides vaccination, a number of available anti-viral treatments can help to

slow the spread of the flu virus in an infected body and reduce the mortality rate.

Most neuraminidase inhibitors prevent this surface protein of the flu virus from

cleaving sialic acid residues from the carbohydrate sidechains present in the mem-

branes of cells. As a result, the newly produced viruses find themselves unable to

leave the infected cell and propagate the infection. It is therefore important to re-
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ceive anti-viral treatment within the first 48 hours of infection, otherwise it might

be too late to slow down the spread of the disease and avoid the most severe symp-

toms.

The binding site of neuraminidase is a polar pocket, extending onto the surface

of the protein. A depiction of the interactions between important amino acids in

the binding site and an analogue of sialic acid, compound 10 is presented in figure

5.1.

Figure 5.1: The binding site in the crystal structure of a N9 strain of influenza A

complexed with the 6-carboxamide sialic acid analogue compound 10.149 Hydro-
gen atoms on the amino acid sidechains and waters are not shown for clarity. The
oxygen atoms of the buried water molecules are shown in yellow.

Towards the top of the binding site, a triad of arginine side chains (Arg118,

Arg292 and Arg371) interact strongly with the carboxylate moiety of the inhibitor,

including a planar salt bridge with Arg371. The acetamido fragment (middle, bot-

tom of picture 5.1) interacts through hydrogen bonds with Arg152 and a buried

water molecule, and the methyl group makes favorable contacts with Trp178 and

Ile222. The amino group of 10 (left corner of picture 5.1 ) occupies a small

pocket where it experiences hydrogen bonding interactions with Glu119, Asp151,

Arg156, Glu227 and a buried water molecule. The apolar substituents on the amide

group (right corner of picture 5.1 ) fill two distinct small pockets. The phenethyl

group of 10 fits into the ’trans’ pocket between Ile222 and Ala246 while the propyl
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group occupies the ’cis’ pocket delimited by Glu276 and Arg224.

Different substitutions on the cis and trans part of the amide group are listed

in table 5.1. It can be seen that the perturbations cover a wide range of binding

affinity. The common scaffold of these inhibitors is shown in figure 5.2.

Figure 5.2: Structure of the neuraminidase inhibitors.

Table 5.1: Experimental activity of the sialic acid analogues

against neuraminidase78

Compound Rtrans Rcis Rpol IC50 (µM)

1 Me H NH+
3 190

2 Et H NH+
3 13

3 Me Me NH+
3 2.4

4 Et Et NH+
3 0.003

5 Me H NHC(NH2)
+ 7

6 Me Me NHC(NH2)
+ 0.025

7 Et Et NHC(NH2)
+ 0.001

8 (CH2)2Ph Pr NHC(NH2)
+ 0.005

9 (CH2)2Ph H NH+
3 12

10 (CH2)2Ph Pr NH+
3 0.005

In general, it appears more favourable to fill the cis pocket than the trans

pocket, up to the Et or Pr substituent (2 to 4, 2 to 3, 1 to 2). This is presumably be-

cause this pocket is less solvent exposed and hydrophobic substituents placed there

can experience stronger van der Waals forces than in the wider, more exposed trans

pocket. It appears that there is no further benefit from adding substituents bulkier

than Et in either pocket (4 to 10).



CHAPTER 5. APPLICATION TO A PROTEIN-LIGAND SYSTEM :

NEURAMINIDASE 127

In addition, the amino group can be replaced by a guanadino group. The re-

sulting compounds exhibit a stronger binding affinity. Crystallographic evidence

suggests that the increases in binding affinity is partly due to the expulsion of a

buried water molecule. This water would normally interact with the amino group,

but cannot be accomodated in the binding site in the presence of the bulkier gua-

nadino group.

5.3 System setup and simulation protocols

The PDB structure of a N9 neuraminidase complexed to compound 10 at a reso-

lution of 2.0 Å was selected as the starting point for this study (PDB code 1BJI).

Hydrogen atoms were added using the program reduce.151 The ligands were mod-

elled in the complex on the basis of the binding mode of 10. As the experimental

studies were conducted at a pH of 6.5, the histidines were assumed to be proto-

nated, unless there was evidence that a hydrogen bond could be accepted from

another residue. The protein was setup with the AMBER99 force field, inhibitors

were setup with the GAFF force field and the atomic partial charges were derived

using the AM1/BCC method109 as implemented in the package AMBER8.112 The

system was energy minimized using the Sander module of AMBER8 and a gen-

eralised Born force field.112 The backbone of the energy minimized protein was

kept rigid for subsequent Monte Carlo simulations which were conducted with a

modified version of the ProtoMS2.1 package.147 To reduce the computational cost,

only the protein residues that are within 15 Å of any heavy atom of compound 10

were retained. The resulting protein scoop consisted of 145 residues. For the ex-

plicit solvent simulations, the complex was hydrated by a sphere of TIP4P water

molecules138 of 22 Å radius and centred near the geometric centre of the ligand.

To prevent evaporation, a half-harmonic potential with a 1.5 kcal mol−1Å−1 con-

stant was applied to water molecules whose oxygen atom distance to the ligand

centre of geometry was greater than 22 Å. A similar sphere of water was em-

ployed to solvate the ligands in the unbound state. The bond angles and torsions

of the protein side chains within 10 Å of any heavy atom of the ligand and all the
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bond angles and torsions of the ligand were sampled during the simulation with

the exception of rings. The bond lengths of the protein and ligand were kept rigid.

In addition random rigid body translations and rotation of the ligand were per-

formed (with a step size of 0.03 Å and 0.1 degrees respectively).The total charge

of the system was brought to zero by neutralizing 2 lysine residues lying in the

outer (frozen) part of the scoop (residue numbers 273 and 432). A 10 Å residue

based cutoff was employed in all simulations. In the generalised Born simulations,

a cutoff of 20.0 Å for the calculation of the Born radii was applied. To increase the

efficiency of the generalised Born simulations, the techniques developed in chap-

ter 3 were employed. In particular, a threshold of 0.005 Å to the recalculation of

the Born energy was applied. A simplified sampling potential with a residue based

cutoff of 6.0 Å, Born radii cutoff of 12 Å and threshold 0.05 Å was adopted and

generated configurations were considered for the calculation of thermodynamic

properties every 10 steps of this potential. A series of perturbations that transform

one ligand into another was devised.

For the explicit solvent simulations in the bound state, solvent moves were

attempted with a probability of 85.7%, protein sidechain move with a probabil-

ity of 12.8% and solute move with a probability of 1.4%. In the unbound state,

solvent moves were attempted 98.4% of the time. The solvent was equilibrated

for 20 million (M) configurations to remove any repulsive contact with the so-

lute(s). The system was then equilibrated in one end state (typically corresponding

to the largest ligand) for 20M further moves where solute, protein and solvent

moves were attempted. The resulting configuration was distributed over 12 values

of the coupling parameter λ (0.00,0.10,...,0.90,0.95,1.00) and equilibrated for 10M

moves before collecting statistics for 30M moves. In agreement with the experi-

mental binding free energy measurement protocol, the simulations were carried

out at a temperature of 37 ◦C.149

In the implicit solvent simulations, solute moves were attemped 10% of the

time, with the remainder being protein sidechain moves. In the unbound state, 2

thousand (K) moves of equilibration were performed before 200 K moves of data

collection. In the bound state, the system was pre-equilibrated at one value of λ
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for 600 K moves. The resulting configuration was distributed over the 12 values

of λ and further equilibration was performed for 100 K moves. Data was collected

over the remaining 900 K moves.

This series of inhibitors was also scored using common empirical scoring func-

tions described in the literature. The program GOLD12 was used to obtain scores

with the scoring functions Goldscore,21 Chemscore19,20 and ASP.22 The com-

pounds were scored on the basis of the modelled binding mode in the energy min-

imised X-ray structure of neuraminidase used in the free energy study. To avoid

artefacts due to use of a different force field, the ligands were locally minimised

according to each scoring function, prior to scoring.

5.4 Explicit solvent simulations results

The calculated relative binding free energies with the explicit solvent protocol

for the series of DANA derivatives is shown in table 5.2. The results follows the

experimental trends, but the binding free energies of the stronger inhibitors are

overestimated.
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Table 5.2: Comparison between experimental and calculated relative binding free energies and
relative solvation free energies with the explicit solvent protocola

Pert Expb ∆∆Gbind ∆∆Gsolv ∆Gprot ∆Gwat ∆Gvac

1t3 -2.67 -5.25 ± 0.62 -1.58 ± 0.67 21.87 ± 0.34 27.12 ± 0.52 28.70 ± 0.43

1t2 -1.63 1.44 ± 0.41 1.24 ± 0.32 1.87 ± 0.29 0.43 ± 0.29 -0.81 ± 0.14

2t3 -1.04 -7.19 ± 0.77 -2.52 ± 0.78 19.74 ± 0.43 26.93 ± 0.64 29.45 ± 0.45

3t4 -4.09 -4.14 ± 0.69 1.46 ± 0.54 -8.78 ± 0.51 -4.64 ± 0.47 -6.10 ± 0.27

2t4 -5.13 -9.32 ± 1.06 -2.53 ± 1.08 12.04 ± 0.65 21.36 ± 0.84 23.89 ± 0.68

2t9 0.08 -2.56 ± 1.21 0.84 ± 0.93 -7.30 ± 0.80 -4.74 ± 0.91 -5.58 ± 0.20

4t10 0.25 -5.46 ± 1.38 2.34 ± 1.09 -3.12 ± 0.90 2.34 ± 1.04 0.00 ± 0.31

9t10 -4.80 -11.86 ± 1.33 -1.49 ± 1.32 13.33 ± 0.81 25.19 ± 1.06 26.68 ± 0.78

3t6 -2.78 24.00 ± 1.35 -7.27 ± 1.30 8.68 ± 0.82 -14.64 ± 1.32 -8.05 ± 0.89

5t6 -3.45 -5.61 ± 0.58 -1.62 ± 0.62 20.69 ± 0.27 26.30 ± 0.51 27.92 ± 0.35

5t7 -5.15 -7.34 ± 1.18 0.10 ± 1.04 15.12 ± 0.78 22.46 ± 0.88 22.36 ± 0.56

6t7 -1.70 -1.36 ± 0.66 1.14 ± 0.53 -4.54 ± 0.49 -3.18 ± 0.44 -4.32 ± 0.29

7t8 0.65 -3.97 ± 1.39 3.07 ± 1.04 -4.62 ± 0.99 -0.65 ± 0.97 -3.72 ± 0.37

a Figures in kcal mol−1

b Relative free energies are calculated using the formula ∆∆G= ∆G2−∆G1 =RTln(K1/K2)with
the approximation that the ratio of the IC50 is equal to the ratio of the dissociation constants.
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In an attempt to assess the reliability of the simulation results, four different

thermodynamic cycles were closed for the binding and solvation free energies. The

resulting hystereses are shown in figure 5.3.

The hystereses are not as low as the simulation results reported in the previous

chapter. In particular, the closure for compounds 2, 3 and 4 is a bit high for both

the solvation and binding free energies.

A difficulty arises in the perturbation of compound 3 into compound 6. Crys-

tallographic evidence suggests that the bulkier guanadino group of 6 must expel

a crystallographic water that is present when 3 is bound. Initially, the perturba-

tion was conducted in the presence of the crystallographic water. Towards the end

of the perturbation, the guanadino group is sufficiently large such that the water

molecule must move out of the way. To estimate the free energy change, a dif-

ferent protocol than the one described in the methods section was devised. Each

window was equilibrated for 30M moves and data collection was then performed

for 50M moves. The crystallographic bound water molecule was treated as a so-
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Figure 5.3: Explicit solvent protocol: the closure of four thermodynamic cycles
for the calculated relative binding (blue) and solvation (red) free energies of the
DANA analogues. All the figures are in kilocalories per mole.

lute molecule by ProtoMS. Large translational moves were allowed for this water

molecule. It was hoped that this would permit the water to escape from the pocket

where it usually lies, once the guanadino group is fully grown. The free energy

change for the perturbation in the bound state was then found to be 8.68 ± 1.00

kcal mol−1. The free energy change for the perturbation in the unbound state was

calculated with the standard protocol and found to be -14.64 ± 1.32 kcal mol−1.

The relative binding free energy is thus 23.32 ± 1.65 kcal mol−1. This quantity

is very different from the experimental answer, which is -2.78 kcal mol−1. In-

spection of the trajectory snapshots and the energy components collected in the

simulation show that the high free energy chance in the bound state is due to un-

favourable Lennard Jones interactions between the crystallographic water and the

guanadino group. Over the simulation time scale, the water is unable to leave the

binding site and is trapped in a metastable state between the protein and ligand.

Barillari and coworkers have studied a very similar system,167 where the amino

group is perturbed into a guanadino group. The only difference between the lig-
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ands they studied and those presented here is the replacement of the amide moiety

and the cis/trans substituents by a glycerol group. These groups interact with the

protein on the other side of the binding pocket and do not interact directly with

the amino or guanadino group. The replacement of the amino group by a gua-

nadino group is also thought to displace crystallographic bound waters and the

difference in binding free energy between the amino and guanadino derivatives is

-2.3 kcal mol−1. In light of the uncertainties in the experimental measurements,

this is in good agreement with the measured change in binding free energy for our

system (-2.78 kcal mol−1). Barillari and coworkers employed a more elaborate

simulation protocol where the whole protein is solvated into a box of TIP4P water

and subject to periodic boundary conditions. In addition, small motion of the pro-

tein backbone was allowed. The perturbation was conducted in several steps, with

the anihilation of crystallographic bound waters first (using the double decoupling

methodology), followed by the perturbation of 3 into 6. Barillari and coworkers re-

ported that the calculated binding free energy was strongly dependent on the non

bonded cutoff employed. With a non bonded cutoff of 10 Å, a relative binding

free energy of 14.2 ± 1.2 kcal mol−1 was obtained. With a non bonded cutoff of

20 Å, the relative binding free energy dropped to -0.2 ± 1.2 kcal mol−1. With a

non bonded cutoff of 30 Å, the relative binding free energy was found to be -3.4

± 1.1 kcal mol−1.167

In light of the complexity of the protocol applied by Barillari et al., and the

necessity to apply a large non bonded cutoff, which could not be done easily with

the chosen method to solvate the protein, it was decided to adopt the results of

Barillari et al. obtained at a cutoff of 30 Å for this particular perturbation.

Table 5.3 shows the free energy difference of the ligands with respect to com-

pound 1.
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Table 5.3: Explicit solvent protocol: the Experimental and Calculated Binding free
energies with respect to compound 1.a

Compound Perturbation pathwayb Calc ∆∆Gbind Exptl ∆∆Gbind

7 [1t3+3t6+6t7] -10.01 ± 1.42 -7.15

4 [1t3+3t4];[1t2+2t4] -8.64 ± 1.03 -6.76

8 [1t3+3t6+6t7+7t8] -13.98 ± 1.99 -6.51

10 [1t2+2t9+9t10];[1t3+3t4+4t10] -13.92 ± 1.75 -6.51

6 [1t3+3t6] -8.65 ± 1.26 -5.45

3 [1t3] -5.25 ± 0.62 -2.67

5 [1t3+3t6+6t5] -3.04 ± 1.39 -2.00

9 [1t2+2t9] -1.12 ± 1.28 -1.71

2 [1t2];[1t3+3t2] 1.69 ± 0.70 -1.63

1 0 0

a Figures in kcal mol−1

b Figures obtained by summing free energy changes over different perturbations,
and in some cases, averaging over two different pathways

The results for the explicit solvent simulations on this set of ligands is sum-

marised in figure 5.4. At 3.38 kcal mol−1, the MUE is relatively high. This

is essentially because the binding energy of the two potent binders 10 and 8 is

vastly overestimated. If these two compounds are excluded, the MUE drops to

2.21 kcal mol−1. The results nonetheless follow closely the experimental trends

and the coefficient of determination is 0.82 and the predictive index 0.93.

The poor quantitative agreement of some of the simulation results is of con-

cern. In light of the observations of Barillari et al., it was decided that a non bonded

residue cutoff of 10 Å might be not adequate for this sytem. The simulations were

therefore repeated with a non bonded residue cutoff of 12 Å. A cutoff larger than

12 Å would require a different system setup, which includes a larger portion of the

protein residues and a larger sphere of water to solvate the protein-ligand complex.

The simulation results are reported in table 5.4.
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Figure 5.4: Summary of the explicit solvent protocol results. The amino ligands are
represented with a circle, the guanadino ligands are represented with a triangle.

Table 5.4: Comparison between experimental and calculated relative binding free
Energies and relative Solvation free Energies with the explicit solvent protocol

and a non bonded cutoff of 12 Å a

Pert Expb ∆∆Gbind ∆∆Gsolv ∆Gprot ∆Gwat

1t3 -2.67 -5.45 ± 0.61 -1.23 ± 0.67 22.02 ± 0.31 27.47 ± 0.52

1t2 -1.63 -3.44 ± 0.36 1.24 ± 0.34 -3.01 ± 0.18 0.43 ± 0.31

2t3 -1.04 -2.22 ± 0.74 -2.47 ± 0.77 24.76 ± 0.41 26.98 ± 0.62

3t4 -4.09 -6.28 ± 0.54 1.03 ± 0.52 -11.35 ± 0.30 -5.07 ± 0.45

2t4 -5.13 -5.80 ± 1.02 -2.15 ± 1.06 15.94 ± 0.62 21.74 ± 0.81

2t9 0.08 -0.57 ± 0.95 0.83 ± 0.96 -5.32 ± 0.78 -4.75 ± 0.94

4t10 0.25 -11.60 ± 1.26 2.52 ± 1.02 -9.08 ± 0.81 2.52 ± 0.97

9t10 -4.80 -10.84 ± 1.34 -1.99 ± 1.29 13.85 ± 0.86 24.69 ± 1.03

5t6 -3.45 -6.22 ± 0.58 -1.63 ± 0.64 20.07 ± 0.23 26.29 ± 0.53

5t7 -5.15 -12.84 ± 1.06 -0.29 ± 1.02 9.23 ± 0.63 22.07 ± 0.85

6t7 -1.70 -5.79 ± 0.58 0.41 ± 0.54 -9.70 ± 0.36 -3.91 ± 0.45

7t8 0.65 -4.09 ± 1.37 1.89 ± 1.09 -5.92 ± 0.90 -1.83 ± 1.03

a Figures in kcal mol−1

b Relative free energies are calculated using the formula ∆∆G = ∆G2−∆G1 =
RTln(K1/K2) with the approximation that the ratio of the IC50 is equal to the

ratio of the dissociation constants.161
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The closures of the thermodynamic cycles 1 to 2, 2 to 3 and 3 to 1 are 0.21

and 0.00 kcal mol−1 for the binding and solvation free energy respectively. The

closure for the thermodynamic cycle 2 to 3, 3 to 4 and 4 to 2 are 2.70 and 0.71

kcal mol−1. The closure for the cycle 2 to 4, 4 to 10, 10 to 9 and 9 to 2 are 5.99

and 1.53 kcal mol−1. The closure for the cycle 5 to 6, 6 to 7 and 7 to 5 are 0.83

and 0.93 kcal mol−1. The hysteresis is once again high for the cycle involving

compound 2, 3 and 4 and particularly high for the 4 steps cycle, even considering

the statistical error associated with each step. This suggests that these simulation

results can not be interpreted with confidence. However, the two other cycles have

reasonable hysteresis.

Table 5.5 shows the free energy difference of the ligands with respect to com-

pound 1. The results of Barillari et al were once again used for the perturbation of

3 to 6.

Table 5.5: Explicit solvent protocol, cutoff 12 Å: the experimental and calculated
binding free energies with respect to compound1.a

Compound Perturbation pathway Calc ∆∆Gbind Exptl ∆∆Gbind

7 [1t3+3t6+6t7] -14.64 ± 1.38 -7.15

4 [1t3+3t4];[1t2+2t4] -10.49 ± 0.95 -6.76

8 [1t3+3t6+6t7+7t8] -18.73 ± 1.94 -6.51

10 [1t2+2t9+9t10]+[1t3+3t4+4t10] -19.09 ± 1.59 -6.51

6 [1t3+3t6] -9.89 ± 1.26 -5.45

3 [1t3] -5.45 ± 0.61 -2.67

5 [1t3+3t6+6t5] -2.63 ± 1.59 -2.00

9 [1t2+2t9] -4.01 ± 1.02 -1.71

2 [1t2];[1t3+3t2] -3.44 ± 0.66 -1.63

1 0 0

a Figures in kcal mol−1

The results for the explicit solvent simulations on this set of ligands is sum-

marised in figure 5.5. The MUE is even higher than for the simulations performed

at a cutoff of 10 Å. This is once again because of compounds 10 and 8 whose

binding free energy is vastly overestimated. The results still follow the experi-

mental trends and the coefficient of determination is 0.79 and the predictive index
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0.96.
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Figure 5.5: Summary of the explicit solvent protocol results with a non bonded

cutoff of 12 Å. The amino ligands are represented with a circle, the guanadino
ligands are represented with a triangle.

The free energies calculated with a cutoff of 10 or 12 Å are compared in figure

5.6. The solvation free energies are very similar, but the binding free energies ex-

hibit marked differences. It was verified that this was not due to a lack of sampling

by repeating some simulations. Similar results were obtained (within statistical

sampling error) and this confirmed that the large differences cannot be attributed

solely to incomplete sampling.

A detailed analysis of individual simulations is necessary to understand the

origin of the very different binding free energies. The perturbation of compound

4 into 10 involves the addition of an extra phenyl and methyl group at the same

time. The relative solvation free energy is very similar for the simulation carried

out at a cutoff of 10 or 12 Å (+2.34 ± 1.02 and +2.52 ± 0.95 kcal mol−1) but

the relative binding free energies are very different ( -5.46 ± 1.30 and -11.60 ±

1.18 kcal mol−1). Figure 5.7 shows the free energy gradients recorded for the

perturbations carried out in the bound and unbound state, at a cutoff of 10 and 12

Å.
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Figure 5.6: The correlation between predicted solvation and binding free energies

by the two explicit solvent simulation protocols at a cutoff of 10 and 12 Å.
(a) Relative solvation free energies (b) Relative binding free energies
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Figure 5.7: The free energy gradients recorded in the perturbation of 4 into 10.
The solid line corresponds to the perturbation carried out in the bound state with

a cutoff of 10 Å. The dashed line is the perturbation in the unbound state with a

cutoff of 10 Å. The dotted line is the perturbation in the bound state with a cutoff

of 12 Å and the dashed-dotted line the perturbation in the unbound state with a

cutoff of 12 Å.

It is seen that in the unbound state, the free energy gradients are identical to

within statistical error. The gradients in the bound state, however, differ. The free

energy gradients are more negative in the first half of the simulation when the

perturbation is carried out with a cutoff of 12 Å. Most of the difference between

the two simulations comes from the more rapid increase of the free energy gradi-

ents for the perturbation carried out with a cutoff of 10 Å in the later half of the

simulation.
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In an attempt to understant the origin of this difference, the simulation trajec-

tory recorded at a value of λ 0.90 was visualised. Figure 5.8 shows an overlay of

10 snapshots saved during the simulation at the two different cutoff values.

Figure 5.8: Overlay of 10 ligand snapshots sampled from a trajectory recorded at
a value of λ set to 0.90. In red, snapshots from the simulation performed with a

cutoff of 10 Å. In yellow, from the simulation performed with a cutoff of 12 Å.
The solvent accessible surface area of the binding site is represented to indicate
the position of the cis and trans binding pocket.

It is seen that at a cutoff of 10 Å, the ligand centre of geometry is shifted by

about 0.5 Å with respect to the position of the ligand in the simulation carried out

at a cutoff of 12 Å. Further, the propyl group occupies two alternative configura-

tions in the cis pocket, while at a cutoff of 12 Å, no such behavior is observed.

The position of the phenyl ring is essentially unchanged. Since, in the simulation

performed at a cutoff of 10 Å, the system experiences a more rapid increase in

its free energy gradient, and the ligand in this simulation is positioned closer to

the edges of the cis pocket, it is possible that the difference in free energy gra-

dients arises from unfavourable Lennard Jones contact with the amino acids that

form the cis pocket. One way to verify this hypothesis is to plot the contribution of

solute-protein Lennard Jones energy to the free energy gradients recorded during

the simulation. This quantity is simply:

<
∂ULJ,sol−prot

∂λ
>=

<ULJ,sol−prot >λ+dλ −<ULJ,sol−prot >λ−dλ

2δλ
(5.1)
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Figure 5.9 plots this contribution as a function of the coupling parameter λ.

The contribution of the solute-protein intermolecular Lennard Jones energy to the

free energy gradients is very similar for the two systems until about λ = 0.70, at

which point it increases more rapidly when the simulation is carried out at a cutoff

of 10 Å. At a value of λ = 0.90, the difference between the two quantities is a little

under 20 kcal mol−1.λ−1. This would account for about two-thirds of the differ-

ence in the free energy gradients seen in figure 5.7. The remaining difference could

be attributed to other components in the force field, or complex coupling between

different energy terms. It is worth mentioning that crystallographic evidence sug-

gests that the cis pocket cannot accomodate cis substituents larger than a propyl

group, and thus the positive solute-protein Lennard Jones contribution to the free

energy gradients recorded at the end of the simulation indicates that the pocket has

been filled. Since the Lennard Jones energy can become quickly strongly repulsive

at short inter-atomic distances, a small displacement of circa 0.5 Å that brings the

ligand closer to the cis pocket, could be enough to cause the more rapid increase

in free energy gradients for the simulation conducted at a cutoff of 10 Å.
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Figure 5.9: The contribution of the intermolecular Lennard Jones solute-protein
energy to the free energy gradients recorded in the perturbation of 4 into 10. The

solid line is for the perturbation carried out at a cutoff of 10 Å and the dotted line

for the perturbation carried out at a cutoff of 12 Å.

In the perturbation of compound 1 into 2, identical relative solvation free en-

ergies are obtained (1.24 ± 0.30 and 1.24 ± 0.31 kcal mol−1) , while the relative

binding free energies differ markedly( 1.44 ± 0.37 and -3.44 ± 0.32 kcal mol−1).

In the free energy gradients plots, reported in figure 5.10, it is seen that when the
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perturbation is carried out with a non bonded cutoff of 12 Å, the free energy gra-

dients are systematically more negative, and a large discrepancy between the two

simulation protocols towards the latter half of the simulation occurs.
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Figure 5.10: The free energy gradients recorded in the perturbation of 1 into 2.
The solid line corresponds to the perturbation carried out in the bound state with

a cutoff of 10 Å. The dashed line is the perturbation in the unbound state with a

cutoff of 10 Å. The dotted line is the perturbation in the bound state with a cutoff

of 12 Å and the dashed-dotted line the perturbation in the unbound state with a

cutoff of 12 Å.

The different binding free energies arise from the quite different interactions

the ligand exhibit with the protein, as depicted in figure 5.11. When the simulation

is run with a cutoff of 12 Å, the ethyl group of compound 2 fills the cis pocket.

if the simulation is run with a cutoff of 10 Å, the ethyl group occupies the trans

pocket. The ethyl group is too small to fill the larger trans pocket and it experiences

less favourable intermolecular solute-protein Lennard Jones interactions.

This is confirmed by plotting the contribution of the intermolecular Lennard

Jones solute-protein energy to the free energy gradients for this perturbation. From

figure 5.12, it is clear that the ligand experiences more favourable Lennard Jones

interaction if the cutoff is set to 12 Å. Furthermore, the difference in the contribu-

tion of the solute-protein intermolecular Lennard Jones energy to the free energy

gradients accounts for practically all the differences in the free energy gradients

between the two simulations.

Another interesting difference is observed in the explicit solvent simulations.

When simulations are conducted with a cutoff of 12 Å, the residue arginine

371 occasionaly opens up to let a TIP4P water molecule interact with the other
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Figure 5.11: Overlay of 10 ligand snapshots sampled from a trajectory recorded at
a value of λ set to 1.00 for the perturbation 1t2. In red, snapshots from the simu-

lation performed with a cutoff of 10 Å. In yellow, from the simulation performed

with a cutoff of 12 Å. The solvent accessible surface area of the binding site is
represented to indicate the position of the cis and trans binding pocket.
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Figure 5.12: The contribution of the intermolecular Lennard Jones solute-protein
energy to the free energy gradients recorded in the perturbation of 1 into 2. The

solid line is for the perturbation carried out at a cutoff of 10 Å and the dotted line

for the perturbation carried out at a cutoff of 12 Å.

arginines and the carboxylate group of the ligand (see figure 5.13). These config-

urations are typically observed in 10 to 20 % of the trajectories that have been

visualised. This behavior is however, not observed when the simulations are run

with a cutoff of 10 Å, in which case, arginine 371 stays in a configuration that

closely matches its position in the crystallographic structure.
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Figure 5.13: Opening of arginine 371 observed in trajectories generated with a non

bonded cutoff of 12 Å. In gray, the position of the arginine triad in the crystallo-
graphic structure of neuraminidase (1BJI).

5.5 Generalised Born simulations results

The calculated relative binding free energies with the implicit solvent protocol

for the same series of perturbations are presented in table 5.6. The results match

closely the experimental trend and, surprisingly, are in much better quantitative

agreement with experiment than was the case for the explicit solvent simulations.
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Table 5.6: Comparison between experimental and calculated relative binding
free energies and relative solvation free energies with the implicit solvent
protocola

Pert Expb ∆∆Gbind ∆∆Gsolv ∆Gprot ∆Gwat

1t3 -2.67 -2.71 ± 0.55 -1.64 ± 0.51 24.35 ± 0.47 27.06 ± 0.28

1t2 -1.63 -0.21 ± 0.29 1.24 ± 0.19 0.22 ± 0.26 0.43 ± 0.13

2t3 -1.04 -2.32 ± 0.64 -2.63 ± 0.55 24.50 ± 0.55 26.82 ± 0.32

3t4 -4.09 -2.97 ± 0.45 0.95 ± 0.37 -8.12 ± 0.37 -5.15 ± 0.25

2t4 -5.13 -6.31 ± 0.72 -2.44 ± 0.80 15.14 ± 0.56 21.45 ± 0.45

2t9 0.08 2.09 ± 0.58 0.08 ± 0.26 -3.41 ± 0.56 -5.50 ± 0.16

4t10 0.25 2.22 ± 0.73 0.99 ± 0.40 3.21 ± 0.67 0.99 ± 0.30

9t10 -4.80 -8.19 ± 0.97 -0.96 ± 0.95 17.53 ± 0.74 25.72 ± 0.62

3t6 -2.78 -2.86 ± 1.13 -4.97 ± 1.21 -15.88 ± 0.79 -13.02 ± 0.81

5t6 -3.45 -2.95 ± 0.42 -1.87 ± 0.42 23.10 ± 0.34 26.05 ± 0.25

5t7 -5.15 -4.63 ± 0.93 -0.91 ± 0.71 16.82 ± 0.79 21.45 ± 0.50

6t7 -1.70 -2.23 ± 0.50 0.76 ± 0.37 -5.79 ± 0.43 -3.56 ± 0.25

7t8 0.64 0.84 ± 0.78 1.32 ± 0.37 -1.56 ± 0.67 -2.40 ± 0.39

a Figures in kcal mol−1

b Relative free energies are calculated using the formula ∆∆G = ∆G2−∆G1 =
RTln(K1/K2) with the approximation that the ratio of the IC50 is equal to the

ratio of the dissociation constants.161

The closure of the four thermodynamic cycles, shown in figure 5.14 is rea-

sonable, with the exception of the binding free energies for the 4 step cycle. The

statistical sampling error for each step of this cycle is large ( see table 5.6 ) and

reflects the larger structural perturbations that have been attempted. It is therefore

possible that a closure of 2 kcal mol−1 reflects the large statistical uncertainties of

each individual simulation.

Table 5.7 shows the free energy difference of the ligands with respect to com-

pound 1.
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Figure 5.14: Implicit solvent protocol: the closure of four thermodynamic closure
for the calculated relative binding (blue) and solvation (red) free energies of the
DANA analogues. All the figures are in kilocalories per mole.

Table 5.7: Implicit solvent protocol: the experimental and calculated binding free
energies with respect to compound 1.a

Compound Perturbation pathway Calc ∆∆Gbind Exptl ∆∆Gbind

7 [1t3+3t6+6t7] -7.80 ± 1.35 -7.15

4 [1t3+3t4];[1t2+2t4] -6.10 ± 0.74 -6.76

8 [1t3+3t6+6t7+7t8] -6.96 ± 1.56 -6.51

10 [1t2+2t9+9t10]+[1t3+3t4+4t10] -4.89 ± 1.09 -6.51

6 [1t3+3t6] -5.57 ± 1.26 -5.45

3 [1t3] -2.71 ± 0.55 -2.67

5 [1t3+3t6+6t5] -2.62 ± 1.33 -2.00

9 [1t2+2t9] 1.88 ± 0.65 -1.71

2 [1t2];[1t3+3t2] -0.30 ± 0.56 -1.63

1 0 0

a Figures in kcal mol−1

The results for the generalised Born simulations on this set of ligands are sum-

marised in figure 5.15. The MUE at 1.01 kcal mol−1 is much better than that
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obtained for the explicit solvent simulations. The coefficient of determination is

0.84 and is not significantly different from the explicit solvent results. The calcu-

lated predictive index stands at 0.95 and is nearly identical to that obtained with the

explicit solvent protocol. Qualitatively, the explicit and implicit solvent protocols

perform similarly. Quantitatively, the implicit solvent protocol performs signifi-

cantly better.
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Figure 5.15: Summary of the implicit solvent protocol results. The amino ligands
are represented with a circle, the guanadino ligands are represented with a triangle.

Since it was found in the previous section that the explicit solvent simulation

results were sensitive to the non bonded cutoff, the same set of simulations was

repeated with a cutoff of 12 Å. It was only necessary to run the simulations in

the bound state, as the simulation results in the unbound state would be identical

with a GBSA force field. The binding free energies thus obtained are summarised

in table 5.8.
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Table 5.8: Comparison between experimental
and calculated relative binding free Energies

with a cutoff of 12 and 10 Å a

Pert Exp ∆∆Gbind
b ∆∆Gbind

c

1t3 -2.67 -3.00 ± 0.47 -2.71 ± 0.55

1t2 -1.63 -0.22 ± 0.29 -0.21 ± 0.29

2t3 -1.04 -2.59 ± 0.63 -2.32 ± 0.64

3t4 -4.09 -2.54 ± 0.50 -2.97 ± 0.45

2t4 -5.13 -5.96 ± 0.74 -6.31 ± 0.72

2t9 0.08 1.89 ± 0.60 2.09 ± 0.58

4t10 0.25 1.99 ± 0.72 2.22 ± 0.73

9t10 -4.80 -7.18 ± 1.01 -8.19 ± 0.97

3t6 -2.78 -1.11 ± 1.09 -2.86 ± 1.13

5t6 -3.45 -2.96 ± 0.47 -2.95 ± 0.42

5t7 -5.15 -5.71 ± 0.90 -4.63 ± 0.93

6t7 -1.70 -3.14 ± 0.47 -2.23 ± 0.50

7t8 0.64 2.12 ± 0.74 0.84 ± 0.78

a Figures in kcal mol−1

b Implicit solvent protocol, cutoff 12 Å

c Implicit solvent protocol, cutoff 10 Å

The closure of the thermodynamic cycles 1 to 2, 2 to 3 and 3 to 1 is 0.19

kcal mol−1. The closure for the thermodynamic cycle 2 to 3, 3 to 4 and 4 to 2 is

0.83 kcal mol−1. The closure for the cycle 2 to 4, 4 to 10, 10 to 9 and 9 to 2 is 1.32

kcal mol−1. The closure for the cycle 5 to 6, 6 to 7 and 7 to 5 is 0.39 kcal mol−1.

These figures are all lower than those obtained with a cutoff of 10 Å and suggest

the results can be interpreted with confidence. The relative binding free energies

with respect to compound 1 are reported in table 5.9.
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Table 5.9: Implicit solvent protocol with a cutoff of 12 Å: the experimental and
calculated binding free energies with respect to compound 1.a

Compound Perturbation pathwayb Calc ∆∆Gbind Exptl ∆∆Gbind

7 [1t3+3t6+6t7] -7.25 ± 1.27 -7.15

4 [1t3+3t4];[1t2+2t4] -5.86 ± 0.74 -6.76

8 [1t3+3t6+6t7+7t8] -5.13 ± 1.47 -6.51

10 [1t2+2t9+9t10]+[1t3+3t4+4t10] -4.53 ± 1.10 -6.51

6 [1t3+3t6] -3.84 ± 1.19 -5.45

3 [1t3] -3.00 ± 0.47 -2.67

5 [1t3+3t6+6t5] -1.15 ± 1.28 -2.00

9 [1t2+2t9] 1.67 ± 0.66 -1.71

2 [1t2];[1t3+3t2] -0.32 ± 0.53 -1.63

1 0 0

a Figures in kcal mol−1

b Figures obtained by summing free energy changes over different perturbations,
and in some cases, averaging over two different pathways

The mean unsigned error is 1.32 kcal mol−1. This is not very different from the

value of 1.01 kcal mol−1, obtained with a cutoff of 10 Å, particularly considering

the very different results that were obtained for the explicit solvent simulations at

two different cutoff values. The PI has increased to 0.97 because all the ligands

except compound 9 have been correctly ranked. The results are summarised in

figure 5.16.

In the previous section, it has been shown that increasing the non bonded cut-

off from 10 to 12 Å did not improve the simulation results and that this caused the

residue arginine 371 to exhibit unexpected configurations. In the generalised Born

simulations, with a cutoff of 10 or 12 Å, no such behavior is observed and the

arginine stays in the configuration it adopts in the crystal structure. This suggests

that the previous behaviour is caused by an imbalance of electrostatic interactions

between TIP4P water and this arginine. Long range electrostatics might indeed

be a reason why the generalised Born results are much less sensitive to the non

bonded cutoff than the explicit solvent results. Because the generalised Born en-

ergy is anti-correlated to the coulombic energy term, fluctuations in the long range

coulombic term are dampened.133 Another source of discrepancy might lie in the
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Figure 5.16: Summary of the implicit solvent protocol results obtained with a cut-

off of 12 Å. The amino ligands are represented with a circle, the guanadino ligands
are represented with a triangle.

solvation of the protein by a ball of TIP4P water molecules. While this treatment

has been employed several times,51–54 it is known to affect the calculated binding

free energies by introducing boundary effects. If long range electrostatic effects

are important in this system, a periodic box of water might be more appropriate.

Note that this would increase the computational expense for the explicit solvent

calculations by approximately one order of magnitude.

In figure 5.17, correlation plots between the generalised Born and TIP4P sim-

ulations for the solvation and binding free energies are reported. It is clear that

both methodologies reproduce well the relative solvation free energies of the com-

pounds in this set. The biggest discrepancy occurs for the perturbation 3t6, where

there is a difference of 1.6 kcal mol−1 between the two methods (bottom left cor-

ner of figure 5.17(a)). This perturbation involves the transformation of an amino

group into a guanadino group and has a large associated statistical error with both

solvation protocols. As most other perturbations involve the addition of extra non-

polar groups, it is not unsurprising to observe very good agreement. In the pertur-

bations of 4 to 10 and 7 to 8, which consist of the addition of an extra phenyl and

methyl group, the generalised Born simulations predict a relative solvation free
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energy which is lower than the explicit solvent protocol by 1.3-1.8 kcal mol−1.

Although it is fair to note that the explicit solvent simulations have a high statisti-

cal sampling error (circa 1.0 kcal mol−1), while the sampling error for the implicit

solvent simulation is only 0.3-0.4 kcal mol−1.
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Figure 5.17: The correlation between predicted solvation and binding free energies

by the explicit and implicit solvent simulation protocols at a cutoff of 10 Å.
(a) Relative solvation free energies (b) Relative binding free energies
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Figure 5.18: The free energy gradients recorded in the perturbation of 1 into 2 in
the bound state. The solid line corresponds to the perturbation carried out in ex-

plicit solvent with a cutoff of 10 Å. The dashed line is the perturbation in implicit

solvent with a cutoff of 10 Å. The dotted line is the perturbation in explicit sol-

vent with a cutoff of 12 Å and the dashed-dotted line the perturbation in implicit

solvent with a cutoff of 12 Å.

The strong decrease in correlation between the solvation and binding free en-

ergies warrants a detailed analysis of the simulation trajectories generated by the

two methodologies. In figure 5.18, the free energy gradients for the perturbation
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of 1 to 2 in the bound state in an implicit solvent model with a non bonded cutoff

of 10 and 12 Å is reported. For visual emphasis, the results obtained with the

explicit solvent simulation are also reported. The implicit solvent simulations are

very similar, unlike the explicit solvent simulations. Interestingly, towards the end

of the simulation, the free energy gradient increase is such that te final free energy

gradients are intermediate between the two curves obtained for the explicit solvent

simulations. Analysis of the simulation snapshots at a value of λ = 1.0 reveals the

origin of the difference in the free energy gradients.

Figure 5.19: Overlay of 10 ligand snapshots sampled from a trajectory recorded
at a value of λ set to 1.00 for the perturbation 1t2. In orange, snapshots from

the implicit solvent simulation performed with a cutoff of 10 Å. In red, from the

explicit solvent simulation performed with a cutoff of 10 Å. The solvent accessible
surface area of the binding site is represented to indicate the position of the cis and
trans binding pockets.

Figure 5.19 shows an overlay of several ligand snapshots sampled regularly

from the trajectory obtained with the implicit solvent methodology. For visual em-

phasis, the position of the ligand snapshots obtained during a simulation in explicit

solvent at a cutoff of 10 Å is also reproduced. Recalling the results of the previous

section, when running an explicit solvent simulation, the ethyl group is seen to oc-

cupy mainly a single pocket, depending on the cutoff employed. This resulted in

very different free energy profiles. In the generalised Born simulations, the ethyl

group on the ligand can sample both pockets during the simulations and the free

energy profiles are not sensitive to the non bonded cutoff employed. Also, it can be

seen that the position of the central ring of the ligand differs between the solvation
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models. In the explicit solvent simulations, the ring is slightly tilted compared to

the ring in the implicit solvent simulations and the amide group that bears the ethyl

substituent is projected closer to the edges of the cis pocket by circa 0.8 Å.

For completeness, the contribution of the intermolecular Lennard Jones solute-

protein energy to the free energy gradients for the generalised Born simulations

performed at the two different cutoffs values is plotted in figure 5.20. For reference,

the two explicit solvent profiles are also plotted.
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Figure 5.20: The contribution of the intermolecular Lennard Jones solute-protein
energy to the free energy gradients recorded in the perturbation of 1 into 2. The
solid line is for the perturbation carried in explicit solvent with a cutoff of 10

Å and the dotted line at a cutoff of 12 Å. The dashed and dotted-dashed lines
corresponds to the implicit solvent profiles, obtained at a cutoff of 10 or 12 Å
respectively.

The following observations suggest that the origin of the differences in the

free energy gradients between the implicit and explicit solvent approaches can be

due to three factors. First, the solvation model can have such an influence on the

potential energy surface that the two ligands adopt different configurations in the

binding site. As a result, when the extra methyl group is grown, it experiences a

different environment. The discrepancy between the two simulations would there-

fore be caused by force field effects. Second, in the explicit solvent simulations,

conversion of the ligand between the two configurations can be hindered by the

presence of several water molecules around the binding site. With simple Monte

Carlo moves that randomly displace/rotate one water molecule at a time, it might

be difficult for the solvent to let the ethyl group rotate freely. The origin of the

differences between the free energy gradients would then be caused by an incom-

plete sampling of the thermally accessible states for the ligand in the binding site.
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Third, a combination of the two.

The construction of the predictivity plot (figure 5.15) with respect to ligand

1 requires the perturbation of compound 3 into 6 to be performed. As was noted

in the previous section, this requires the anihilation of a water molecule. Here no

such difficulty is encountered since no water molecule has been modelled into the

binding site with the generalised Born protocol and the perturbation does not show

any conceptual difficulty. Intuitively, one would expect the implicit solvent simu-

lation to yield results in disagreement with the observed change in binding free

energy. This is because a crystallographic water molecule bridging interactions

between the ligand and the protein should exhibit a behaviour very different from

bulk water. The experimental change in binding free energy is -2.8 kcal mol−1.

With a simulation cutoff of 10 Å, the generalised Born simulation yields a result

of -3.03 ± 1.27 kcal mol−1, which is in very good agreement. With concern that

this result might be due to luck, the simulation was extended for a further 900 K

moves for each window. The final results, -2.86 ± 1.04 kcal mol−1 is not differ-

ent. The same simulation was repeated with a different restart point and a cutoff

of 12 Å. The obtained binding free energy was -0.93 ± 1.36. Extension of the

simulation by 900 K more moves gives a free energy difference of -1.11 ± 1.12

kcal mol−1. Thus the results with a cutoff of 12 Å are not as accurate as those with

a cutoff of 10 Å. However they have to be considered in light of their large statis-

tical uncertainty. In the previous section, the direct perturbation of 3 into 6 did not

give good agreement with experiment, because the water was trapped between the

ligand and protein and unable to escape to the bulk on the simulation time scale.

Here as there is no explicit water, the guanadino group can be accomodated into

the pocket without difficulty. It is tempting to argue that in the process of growing

the guanadino group, a volume of high dielectric space has been replaced by a low

dielectric space. Thus, to some extent, the desolvation of the pocket is taken into

account by the generalised Born theory. It is surprising however that such a simple

treatment of water expulsion would lead to a good agreement with experiment and

in the absence of other systems to test the methodology, one must keep in mind that

the good agreement between observed and calculated binding free energy change
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might be fortuitous.

5.6 Influence of protein flexibility

Following the encouraging results obtained with COX-2 in the previous chapter,

the impact of the protein flexibility on the free energy results obtained with the

generalised Born protocol are investigated in this section. The fixed protein sim-

ulations were carried out for 300 K moves, with equilibration of 30 K at each

window. A non bonded residue cutoff of 10 Å was used. The simulation duration

was about 40-60% of the time taken by the simulations with protein flexibility.

Table 5.10: Comparison between experimen-
tal and calculated relative binding free ener-

gies, implicit solvent, cutoff 10 Å and rigid
or flexible proteina

Pert Exp ∆∆Gbind
b ∆∆Gbind

c

1t3 -2.67 -3.32 ± 0.40 -2.71 ± 0.55

1t2 -1.63 -1.13 ± 0.26 -0.21 ± 0.29

2t3 -1.04 -2.64 ± 0.53 -2.32 ± 0.64

3t4 -4.09 -3.68 ± 0.45 -2.97 ± 0.45

2t4 -5.13 -6.30 ± 0.69 -6.31 ± 0.72

2t9 0.08 -1.50 ± 0.47 2.09 ± 0.58

4t10 0.25 -1.41 ± 0.60 2.22 ± 0.73

9t10 -4.80 -8.24 ± 0.97 -8.19 ± 0.97

3t6 -2.78 -2.97 ± 1.18 -2.86 ± 1.13

5t6 -3.45 -3.53 ± 0.38 -2.95 ± 0.42

5t7 -5.15 -6.60 ± 0.84 -4.63 ± 0.93

6t7 -1.70 -3.38 ± 0.49 -2.23 ± 0.50

7t8 0.64 -2.94 ± 0.62 0.84 ± 0.78

a Figures in kcal mol−1

b Implicit solvent protocol, no protein flexibil-
ity

c Implicit solvent protocol, protein flexibility

The closure of the thermodynamic cycles 1 to 2, 2 to 3 and 3 to 1 is 0.45

kcal mol−1. The closure for the thermodynamic cycle 2 to 3, 3 to 4 and 4 to 2

is 0.02 kcal mol−1. The closure for the cycle 2 to 4, 4 to 10, 10 to 9 and 9 to
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2 is 2.03 kcal mol−1. The closure for the cycle 5 to 6, 6 to 7 and 7 to 5 is 0.31

kcal mol−1. The cycle involving the larger substituents 9 and 10 always exhibit

large deviations from good closure. This could be either because the sampling is

insufficient or because there are inconsistencies in the models of each end state at

the different perturbations. However, we do not find any such inconsistency in the

input files.

The relative binding free energies with respect to compound 1 are reported in

table 5.11.

Table 5.11: Implicit solvent protocol and rigid protein with a cutoff of 10 Å: the
experimental and calculated binding free energies with respect to compound 1.a

Compound Perturbation pathwayb Calc ∆∆Gbind Exptl ∆∆Gbind

7 [1t3+3t6+6t7] -9.67 ± 1.34 -7.15

4 [1t3+3t4];[1t2+2t4] -7.22 ± 0.67 -6.76

8 [1t3+3t6+6t7+7t8] -12.61 ± 1.48 -6.51

10 [1t2+2t9+9t10]+[1t3+3t4+4t10] -9.64 ± 0.98 -6.51

6 [1t3+3t6] -6.29 ± 1.25 -5.45

3 [1t3] -3.32 ± 0.40 -2.67

5 [1t3+3t6+6t5] -2.76 ± 1.31 -2.00

9 [1t2+2t9] -2.63 ± 0.53 -1.71

2 [1t2];[1t3+3t2] -0.91 ± 0.46 -1.63

1 0 0

a Figures in kcal mol−1

b Figures obtained by summing free energy changes over different perturbations,
and in some cases, averaging over two different pathways

The MUE is 1.90 kcal mol−1, which is higher than when the calculations

are performed with protein flexibility enabled. This is mainly because the bind-

ing affinity of 8 and 10 is now largely overestimated. In general, the simulations

now favour the largest compounds, and the binding free energies of compound 8,

9 and 10 are now more negative by about 4 to 5 kcal mol−1. Other less bulky sub-

stituents exhibit the same trend, but to a lesser extent (7 more negative by about

2 kcal mol−1, 4 more negative by about 1 kcal mol−1, 3 and 2 more negative by

about 0.60 kcal mol−1.
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This origin of this gain in binding affinity can be directly attributed to the

rigidity of the protein sidechains. In a simulation with protein side chain flexibility

enabled, as the ligands become larger, they occupy a larger portion of the binding

site and they limit the number of configurations the protein side chains surround-

ing the binding site can adopt. This configurational restriction should translate in

a loss of entropy, disvafouring the larger ligands. As this penalty is not consid-

ered if the protein side chain are considered rigid, the larger substituents are more

favoured. The protein binding site was energy minimised in presence of the largest

compound 10 in this series before conducting the Monte Carlo simulations and no

steric clashes between the ligands and the protein side chains occur. This may also

bias the simulation results towards the larger compounds.

In spite of these differences, the coefficient of determination is 0.80 and the

predictive index still stands at a very high value of 0.96, and the qualitative ranking

of the inhibitors is still excellent.

The results are summarised in figure 5.21.
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Figure 5.21: Summary of the results of the implicit solvent protocol with a rigid
protein. The amino ligands are represented with a circle, the guanadino ligands are
represented with a triangle.
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5.7 Importance of configurational averaging

Some workers have suggested incorporating solvation effects into empirical scor-

ing functions by calculating the solvation free energy of a ligand, protein and

ligand-protein complex.165,168 In most empirical scoring functions, a single con-

figuration of the ligand bound in the protein binding site is usually considered.

In figure 5.22, the total electrostatic energy (Coulombic and generalised Born en-

ergy) of compound 1 in the unbound state and bound to the protein is plotted as a

function of the number of Monte Carlo moves.
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Figure 5.22: The fluctuations in the electrostatic energy during the simulation of
compound 1

(a) Isolated in solution (b) Bound to neuraminidase

It is important to remember that the configurations generated are those that are

thermally accessible to the system at a temperature of 37 ◦C. Because the lig-

and is relatively stable in the binding site, and was manually docked such that it

reproduces the binding mode of an analogue, the vast majority of the ligand con-

figurations would be equivalent to acceptable docking results and could have been

used to obtain a score based on that single configuration. From the plots above, it is

seen that the solvation energies fluctuate significantly. Even in the unbound state,

which consists of the ligand isolated in solution, the electrostatic energy can fluc-

tuate by 1 to 2 kcal mol−1. Since all the points along these trajectories would be

a suitable candidate for scoring and yet the electrostatic energy fluctuates signifi-

cantly, any binding energy score obtained from a single snapshot analysis would



CHAPTER 5. APPLICATION TO A PROTEIN-LIGAND SYSTEM :

NEURAMINIDASE 157

arguably be unreliable. The MM/PBSA method may avoid these issues to some

extent as it typically averages the solvation energy of 100-200 hundred snapshots

extracted from an explicit solvent trajectory. It is not clear however if such a low

number of snapshots would be enough to obtain precise results.

5.8 Computational cost and convergence

To assess the efficiency of each methodology employed to rank the compounds

studied in this chapter, the convergence of the mean unsigned error, the predictive

index and the closure of the 4 thermodynamyc cycles is plotted in the following

figures. Results are reported for the simulations performed at a cutoff of 10 Å

only. Similar behaviour is observed at a cutoff of 12 Å.

For the explicit solvent simulations, after 10 hours of simulation, the mean un-

signed error stabilises around 2.5 kcal mol−1. However, it steadily increases after

18 hours. This suggest that all the calculated individual free energy differences

may not be fully converged. The opposite behavior is observed with the implicit

solvent simulations, and the mean unsigned error peaks at 2 kcal mol−1 after about

3 hours and then steadily decreases to 1.08 kcal mol−1 after 9 and a half hours,

when the simulations were stopped. Ideally, these simulations should have been

run longer. The MUE is different from that reported in the previous section (1.01

kcal mol−1), because the perturbation of 3 into 6 was conducted for twice as long

as the timings shown in this graph. For a fair comparison, only the free energy

results for the first half of this perturbation have been used to construct this plot.

If no protein flexibility was allowed, the mean unsigned error is seen to rapidly

oscillate around 1.75 kcal mol−1 after about 3 hours.

The convergence of the predictive indices is plotted in figure 5.24. The PI ob-

tained with the explicit solvent simulations is stable after about 8 hours of simu-

lation. Both implicit solvent protocols yield relatively stable PIs very quickly (in

about one hour).

It is worth recalling that neither figure 5.23 or 5.24 could be used to decide

when the simulations have run for long enough, as in a practical application, these

quantities cannot be calculated without the a priori knowledge of the experimental
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Figure 5.23: The convergence of the mean unsigned error as a function of the time
taken to complete a single simulation at one value of λ.
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Figure 5.24: The convergence of the predictive index as a function of the time
taken to complete a single simulation at one value of λ.

binding free energies. In figure 5.25, the hysteresis of the 4 thermodynamic cycles

is plotted as a function of time, for the three different protocols. Some cycles con-

verge more readily than others. For example, a low hysteresis is rapidly achieved

with every protocol for the cycle involving compounds 1, 2 and 3, while significant

fluctuations of the hysteresis are observed for the cycle between compounds 2, 3

and 4. In addition, the deviations are large ( greater than 1 kcal mol−1) when the

simulations were stopped. Also, in the explicit solvent simulations, the hysteresis

of this cycle can be seen to reduce steadily to 0.5 kcal mol−1 during the first 20
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Figure 5.25: The convergence of the closure of the thermodynamic cycles for the
binding free energies as a function of the time taken to complete a single simula-
tion at one value of λ. The solid lines are for the cycle involving compounds 1, 2, 3
. The dotted lines for the cycle involving compounds 2, 3 and 4. The dashed lines
for the cycle involving compounds 2, 4, 9 and 10. The dashed-dotted lines for the
cycle involving compounds 5, 6 and 7.

hours of simulation, before increasing again up to 2.0 kcal mol−1 at the end the

simulation.

Despite the difficulty in obtaining well behaved hysteresis on this system, it is

worth mentionning that qualitative and quantitative results can be obtained much

more quickly, owing presumably to a cancellation of errors between individual

free energy differences.

5.9 Comparison with empirical scoring functions

Predictive indices for the series of neuraminidase inhibitors have been computed

using the Chemscore, GoldScore and ASP scoring function. The results are pre-

sented graphically in figures 5.26, 5.27 and 5.28. Since it is unclear how the scores

predicted by these methods can be related to binding free energies, quantitative de-

scriptors such as the mean unsigned error or the coefficient of determination were

not calculated.

The predictive index of Chemscore is 0.00. This means that the ordering of

the compounds is random. This is essentially due to the fact that chemscore pe-

nalises greatly the guanadino compounds with respect to the amino derivatives.
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Figure 5.26: Chemscore: Calculated score and experimental binding free energy
of a series of neuraminidase inhibitors. All the data is relative to compound 1

Even within the same family, the discrimination is poor. For example, compound

9 has a score similar to compound 4 while in reality the latter is a stronger binder

by more than 5 kcal mol−1.

By contrast, Goldscore performs fairly well on this set. The main discrepancy

is the relatively high score of the phenyl derivatives which causes the affinity of

compound 9 to be overestimated relative to the other derivatives. The free energy

methods discussed in the previous sections generally did not yield a large binding

affinity increase for the introduction of a phenyl group, in agreement with exper-

imental trends. The plot observed here suggest that Goldscore essentially favours

compounds with the largest number of atoms. Finally, the difference of affinity

between the amino and guanadino groups is well reproduced by Goldscore.

The results obtained with ASP are very similar to those from Goldscore. The

main difference is that the guanadino compounds are more favoured with ASP

than Goldscore. The predictive index stands at 0.77

The results presented here contrast sharply with those obtained for the series

of COX-2 inhibitors, where Chemscore was significantly superior to either Gold-

score or ASP. This suggest that micro/nano molar inhibitors cannot be ranked con-

sistently across different targets by a scoring function.
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Figure 5.27: Goldscore: Calculated score and experimental binding free energy of
a series of neuraminidase inhibitors. All the data is relative to compound 1. The
negative of the Goldscore is plotted such that if the method can explain the varia-
tion of the relative binding free energies, a positive correlation would be observed.

5.10 Conclusion

The relative binding free energies of a series of neuraminidase inhibitor derivatives

of DANA have been calculated by means of explicit solvent (TIP4P) and implicit

solvent (generalised Born) free energy simulations. The results of the implicit sol-

vent simulations, with a mean unsigned error of 1.01 kcal mol−1 and a coefficient

of determination of 0.84 are in quantitative agreement with the experimental mea-

surements. The results obtained with the explicit solvent simulations, with a mean

unsigned error of 3.34 kcal mol−1 deviate significantly from the experimental

data. However, both methodologies predict the qualitative trends in the binding

affinity for the series of inhibitors and yield a predictive index of 0.96 and 0.95 re-

spectively. The explicit solvent simulation results are shown to be very sensitive to

the non bonded cutoff and increasing this to 12 Å leads to a mean unsigned error

of 5.33 kcal mol−1, in poorer quantitative agreement with experiment. It is shown

that a different non bonded cutoff leads to a sampling of different protein-ligand

states in the binding site, which explains the observed large discrepancies. By con-

trast, the generalised Born simulations exhibit a much reduced sensitivity to the
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Figure 5.28: ASP: Calculated score and experimental binding free energy of a
series of neuraminidase inhibitors. All the data is relative to compound 1, and the
negative of the score is plotted for reasons similar to the Goldscore method.

non bonded cutoff. The origin of the discrepancies between explicit and implicit

solvent protocols is attributed to force field effects and the different ensembles of

protein-ligand states that are formed by the two methodologies. In light of the high

degree of exposure of the binding site to the solvent, and the presence of crystal-

lographic water molecules that mediate interactions between the protein and the

ligand, the performance of the generalised Born simulations is truly remarkable.

It is then shown that neglecting protein side chain flexibility does not modify the

qualitative ranking of the inhibitors in this series, although the quantitave agree-

ment is worsened due to a systematic increase in binding affinity for the largest

compounds. It is unclear if the simulation protocol allowed sufficient Monte Carlo

moves to obtain fully converged results. High, relatively stable PIs are obtained in

about 8 hours of simulation with the explicit solvent protocol and in just 1-2 hours

with the implicit solvent protocols (flexible or rigid protein side chains). Finally,

the ability of commonly used empirical scoring functions to rank these compounds

correctly has been assessed by calculating predictive indices for Chemscore, Gold-

score and ASP. The PIs of 0.00, 0.75 and 0.77 are significantly lower and very

different from those recorded on the previous system cyclooxygenase-2, suggest-
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ing that the empirical scoring functions tested here do not produce results of a

consistent quality.



Chapter 6

Alternative pathways in free energy

calculations

“Imagination is more important than knowledge.“

Albert Einstein

6.1 Introduction

One important limitation that most rigorous free energy methods suffer is that, in

order to calculate the relative binding free energy of two ligands, it is necessary

for the two molecules to be very similar in two aspects. First, they should have

a similar potential energy surface such that the FEP or TI equations converge the

free energy difference readily. Second, they should be structurally similar such

that it is simple to devise a change in the internal coordinates of one ligand that

convert it into the other species (with the appropriate modifications of force field

parameters). In an effort to relax this second constraint, alternative methods of

coupling two molecular species in the calculation of their relative free energies are

investigated in this chapter.

6.2 Single and dual topology methods

In a most general fashion, when implementing relative free energy calculations in

a computer program, it is necessary to devise a scheme to transform the poten-
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Figure 6.1: A general thermodynamic cycle that relates the difference in free en-
ergy between S1 and S2 in two media A and B. S1 and S2 could be two small
molecules and medias A and B, water and vacuum, in which case the double free
energy difference will correspond to the relative hydration free energy of S2 with
respect to S1. If the media A and B represents a solvated protein and pure water,
then the double free energy difference will correspond to the relative binding free
energy of S2 with respect to S1. While the horizontal processes corresponding to
∆G3 or ∆G4 are often measured experimentally, the vertical processes correspond-
ing to ∆G1 or ∆G2 are usually easier to calculate in a computer simulation.

tial energy function of a system S1 into the potential energy function of system

S2. Calculated single free energy differences are often not directly comparable to

experiment if they are not related before to a reference state and this is usually

accomplished through the construction of a thermodynamic cycle. A simple and

general thermodynamic cycle is highlighted in figure 6.1.

To calculate the free energy differences in figure 6.1 by free energy perturba-

tion (equation 1.28) or thermodynamic integration (equation 1.30) it is necessary

to define the potential energy function that represents the interactions of S1 or S2

with its surrounding medium. Typically, the two systems are coupled to each other

through the introduction of a parameter λ and a suitable form for a potential energy

function is:

U(λ) =U0+∆U(λ) (6.1)

where U0 represents the energy terms that are not related to S1 or S2 (e.g, the

interactions between solvent molecules). The second term depends on λ which
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often varies between 0 and 1 such that ∆U(0) = U(S1) and ∆U(1) = U(S2). The

exact nature of the coupling is arbitrary as long as the end states (the first and last

states defined by λ) corresponds rigorously to the two systems of interest.

One method to accomplish this is to define each of the force field terms in

∆U(λ) as a linear combination of the values of the force field term of system S1

and S2. For example, the angle stretching term can be expressed as:

Uang(λ) = Kθ(λ)[θ−θeq(λ)]2

Kθ(λ) = λKθ(S2)+(1−λ)Kθ(S1)

θeq(λ) = λθeq(S2)+(1−λ)θeq(S1)

(6.2)

And the coulombic energy for an atom i belonging to the perturbed system and

an atom j belonging to the surrounding medium would be:

Ucoul(λ) =
qi(λ)q j

4πε0ri j(λ)

qi(λ) = λqi(S2)+(1−λ)qi(S1)

ri j(λ) = λri j(S2)+(1−λ)ri j(S1)

(6.3)

Equation 6.3 emphasises that geometric terms as well as force field terms vary

in the coupling of S1 and S2. A difficulty with this method is encountered when the

two systems do not have the same number of atoms. In this case it is necessary to

introduce a dummy atom in one of the end state. In the end state where it should not

exist, the dummy atom should not contribute at all to the intermolecular energy. It

is however often necessary to retain some intramolecular energy terms associated

with the dummy atom. In the absence of bond or angle terms, the dummy atom

would be able to dissociate completely from the molecule it is attached to. This

phenomenon invariably leads to divergence of the calculated free energy difference

and is therefore undesirable.169,170 A solution is to associate a bond or angle term

with the dummy atom throughout the perturbation. The influence of that extra

term on the calculated free energy will normally cancel out in the double free
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energy difference. Because this method requires the presence of the same number

of particles in the two systems, it is often called the single topology method.

Another drawback of the single topology method is that it is necessary to spec-

ify internal coordinate changes such that the system S(λ) matches the topology of

S1 or S2 in the two end states. This operation can be trivial (for example, perturbing

an hydrogen into a methyl group requires the elongation of a C-H bond to a C-C

bond and the introduction of three dummy atoms linked to the hydrogen atom) or

very difficult if one tries for example to couple two molecules with a completely

different topology.

It is possible to define a coupling scheme by adopting a different approach.

Instead of linearly perturbating the force field parameters of a system S(λ), one

can define simultaneously S1 and S2 in the medium. The potential energy function

becomes:

U(λ) =U0+λU(S2)+(1−λ)U(S1) (6.4)

And for example the coulombic energy of atoms i from S2, i’ from S1 with an

atom j from the medium would be:

Ucoul(λ) = λ
qiq j

4πε0ri j
+(1−λ)

qi′q j

4πε0ri′ j
(6.5)

And it is apparent that the coupling with λ occurs by scaling the interaction

energy terms instead of a combination of force field parameters. The two systems

S1 and S2, while present in the simulation, should not experience any interaction

with each other. This is done by ignoring any pair-pair energy terms involving

them. Furthermore, in the implementation chosen here, the intramolecular non

bonded energy of S1 and S2 is not coupled to λ. As a result, a fully decoupled

system will experience the complete intramolecular energy terms and none of the

intermolecular energy terms, which would be equivalent to having transferred the

system to an ideal gas phase. Because in this simulation protocol, the two perturbed

systems are present as distinct molecules the method is called dual topology.31 The

protocol is described in figure 6.2.

An advantage of the dual topology method is that it is not necessary to define
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Figure 6.2: A thermodynamic cycle constructed with the dual topology method
that relates the difference in free energy between S1 and S2 between two medias A
and B. Note that if medium A or B corresponds to an ideal state (’vacuum like’),
then ∆G3 or ∆G4 is 0.

dummy atoms or to devise means to perturb the geometry of S1 into S2. A dis-

advantage is that the number of particles to be simulated is increased, but that is

rarely an issue as the number of particles defining the surrounding medium is often

in vast excess of those part of the perturbed systems.

Because the two methods accomplish the perturbation of S1 into S2 differently,

they will yield different single free energy differences. The double free energy

difference, however, should be identical because the free energy is a state function.

This has indeed been observed by computer simulations.170

6.3 Softening the intermolecular interactions

In the dual topology method, the functional form for the Lennard Jones energy

term would be:

U(λ) =U0(LJ)+λU(S2)LJ +(1−λ)U(S1)LJ (6.6)

and the LJ terms involving interactions with SN and the medium are scaled by
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λ or (1-λ) respectively. If λ is equal to 0 or 1, then one of the systems does not

experience any interaction with the medium, meaning it can for example, overlap

completely with some molecules belonging to the medium. On the other hand, at

a value of λ = 0.001 or λ = 0.999, any such interaction will be reduced by a factor

of one thousand. This could be deemed sufficient to smoothly decouple SN from

the surrounding medium, but recalling the functional form of the Lennard Jones

interaction energy

ULJ = 4εi j

[

(

σi j

ri j

)12

−

(

σi j

ri j

)6
]

(6.7)

because of the high exponent on the repulsive term, two non bonded systems

that approach closely will experience a very high energy and should they fully

overlap, the equation will diverge. This behaviour will not be altered by a simple

linear scaling of the calculated energy.

Dual Topology simulations run with a standard Lennard Jones equation almost

invariably yield divergent free energy profiles close to the end states, where one of

the system must be turned off completely.171,172

This problem could in principle happen in single topology calculations with

dummy atoms. This is however rarely experienced because it has become common

practice to retract the non interacting dummy atoms inside the van derWaals radius

of a nearby non dummy atom. As a result, the dummy atom are ’protected’ from

bad overlaps.173

One method to overcome the so called “Lennard Jones end point singularity”

problem is to make use of a modified Lennard Jones equation.

Beutler et al.171 and Zacharias et al.172 proposed the following equation:

ULJ,so f t,λ = (1−λ)4εi j

[(

σ12
i j

(λαso f t + r2i j)
6

)

−

(

σ6
i j

(λαso f t + r2i j)
3

)]

(6.8)

Equation 6.8 is equivalent to the standard LJ equation when λ is set to 0 and

as the coupling parameter increases, the Lennard Jones interactions are gradually

softened such that when λ is close to unity, atomic overlaps are permitted. This
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equation allows for the smooth annihilation of an atom i belonging to S1. For

the atoms i’ of S2, the parameter λ is simply substituted by (1-λ). Equation 6.8

depends on a parameter αso f t that control the degree of ’softness’ of the potential.

The actual value of the parameter is often adjusted to obtain a smooth free energy

change.174

When the Lennard Jones interactions are softened such that atomic overlaps

between non bonded particles becomes possible, it is necessary to use a modified

functional form for the coulombic equations as well, otherwise, it might be fea-

sible for two atoms of opposite charge to adopt exactly the same coordinates and

experience an infinitely attractive coulombic energy.17,175

Ucoul =
(1−λ)qiq j

4πε0
√

(λ+ r2i j)
(6.9)

The softening of the electrostatic interactions calculated by Ewald summation

has been recently proposed.176

6.4 Solvation free energy calculations

The dual topology method and the separation-shifted scaling softcore described

previously were implemented in a modified version of the program ProtoMS21.147

Equations 6.8 and 6.9 were slightly modified.

ULJ,so f t,λ = (1−λ)4εi j

[(

σ12
i j

(λδσi j + r2i j)
6

)

−

(

σ6
i j

(λδσiJ + r2i j)
3

)]

(6.10)

Ucoul =
(1−λ)nqiq j

4πε0
√

(λ+ r2i j)
(6.11)

The parameter αso f t was replaced by σi j in equation 6.10. This has the advan-

tage that the softness does not have to be specified a priori. Furthermore, the use

of σi j has the advantage that systems experiencing stronger Lennard Jones inter-

actions will be automatically softened further. Should this not be sufficient, the
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degree of softness can still be controlled through the parameter δ, which is set to

1 by default. The exponent n in equation 6.11 was introduced so that the rate of

softening of the coulombic can be controlled as well.

6.4.1 Relative solvation free energy of ethane and methanol

To test the correctness of the implementation, the calculation of the relative sol-

vation free energy of ethane and methanol was performed using single and dual

topology methods.

Simulation protocol

Models of ethane and methanol were constructed using parameters from the GAFF

force field107 and atomic partial charges were derived using the AM1/BCCmethod.108

For the single topology method, two hydrogen atoms on one methyl group of

ethane were retracted with the coupling parameter λ and transformed into dummy

atoms, while the bond length between the two carbon atoms was coupled with λ

such that it matches the equilibrium bond length of two carbon atoms of ethane (λ

= 0) and the carbon-oxygen bond of methanol (λ = 1). The solute(s) were placed

at the center of a cubic box of dimension 25x25x25 Å which was filled with 533

TIP4P water molecules. A switching residue based cutoff of 10 Å was used and

the intermolecular energies were feathered over the last 0.5 Å. The system was

equilibrated for 50 million (M) moves at a temperature of 25 ◦C and a pressure of

1 atmosphere in the NPT ensemble. To keep the solute(s) centred in the box, trans-

lational motion of the solute was removed (but rotational motion was conserved).

Solvent moves were attempted 99%, solute moves 0.9% and volume moves 0.1%

of the time. Preferential sampling was employed with a constant of 200.0. The

resulting configuration was distributed over 11 simulations of evenly spaced cou-

pling parameter λ (0.00, 0.10 ,.., 0.90, 1.00). Each simulation was equilibrated for

5M moves and statistics were collected for 25 M subsequent moves. Free energy

differences were calculated using the Replica Exchange Thermodynamic Integra-

tion method59 and moves between neighbouring replicas were attempted every 200

K moves.
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The single topology method required the perturbation of ethane into methanol

in the gas phase. This was done by running 11 simulations of the evenly spaced

coupling parameter λ for 500 K moves each.

In the dual topology simulations, unless otherwise noted, the rigid body rota-

tions of the two solutes were coupled together. This should ensure that the two

solutes will stay close to each other and is expected to help converge the free en-

ergies. The same principle is applied to the translation of the whole solutes, but

there is no translational motion in this system.

The errors reported for each individual free energy are calculated in the fol-

lowing manner. For each calculation performed at a value of λ, the distribution

of forwards free energy gradients (formed from the energy difference between the

simulation performed at (λ + dλ) and λ) as calculated by ProtoMS for each block

of the simulation are collected. A 95 % confidence interval is calculated for this

distribution of forwards energy. The same procedure is applied for the backwards

free energy ((λ - dλ) - λ). In a worst case scenario, the error estimate on the for-

wards free energy gradients is added to the forwards free energy gradients while

the error estimate on the backwards free energy gradients is substracted. The same

procedure is repeated by substracting and adding the error estimates to the for-

wards and backwards free energy gradients. This give an upper and lower bound

to the value of the free energy gradients collected in this simulation. The actual

free energy gradients are taken as the average of the forwards and the opposite of

the backwards free energy gradients. This procedure is repeated for every value

of λ. The three different free energy gradient profiles are then integrated to yield

three different values of free energy change. The error on the estimated free energy

is then taken as the average of the difference between the two free energies that

included the maximum error estimates.

In principle, this procedure should yield a maximum upper bound on the statis-

tical error associated with the free energy. However, this would be true only if all

the regions of phase space that contribute significantly to the free energy difference

have been visited with the correct probabilities.

Another more established method to calculate an error interval on the free en-

ergy difference is to calculate the free energy change for each block of simulation.
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If during each block of simulation, the whole of phase space had been thoroughly

sampled, then the same free energy difference would be obtained. In practice, they

are likely to differ however. By plotting the distribution of the free energies calcu-

lated in each block of the simulation, a 95 % confidence interval can be obtained

from this distribution. Prior to performing this analysis, the data from N blocks of

K moves can be reduced to L blocks of (K*(N/L)) moves. This can be useful if

the number of moves K was too short, in which case a correlation between two

subsequent blocks would exist. This correlation would have an adverse effect on

the calculation of the 95 % confidence interval, whose derivation is based on the

assumption that the input data is not correlated.

Simulation results

In an effort to reliably assess the convergence of the calculated free energies, a

free energy simulation was performed five times for several protocols. All the

simulations used a different random number seed and yielded slightly different

free energies. The errors for each simulation were estimated by calculating error

bounds on the free energy gradients, or by performing a block average analysis of

the distribution of free energies. These were calculated with an interval of 100K

or 500K moves for each block. The results are presented in table 6.1. For compari-

son, the experimental relative solvation free energy difference between ethane and

methanol is -6.90 kcal mol−1.115
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Table 6.1: Relative solvation free energy of ethane and methanola

run ∆∆Gsolv Errorgrads Errorblock500K Errorblock100K

Single Topologyb

1 -5.95 0.36 0.18 0.10

2 -5.79 0.37 0.20 0.11

3 -5.99 0.37 0.19 0.11

4 -6.19 0.36 0.15 0.10

5 -5.82 0.35 0.17 0.11

Average -5.95 ± 0.15

Dual Topology, no softcore

1 -11.12 1.55 1.86 1.29

Dual Topology, softcore, δ = 0.25, n=1

1 -7.63 0.61 0.57 0.35

Dual Topology, softcore, δ = 1, n = 1

1 -6.20 0.42 0.21 0.13

2 -5.98 0.41 0.26 0.14

3 -6.34 0.43 0.20 0.13

4 -5.97 0.42 0.19 0.12

5 -6.02 0.42 0.17 0.12

Average -6.10 ± 0.15

Dual Topology, softcore, δ = 1, n = 1, do not sync rotations

1 -6.30 0.36 0.24 0.14

2 -5.90 0.36 0.29 0.16

3 -5.87 0.34 0.23 0.13

4 -6.09 0.36 0.20 0.13

5 -6.01 0.38 0.19 0.12

Average -6.03 ± 0.16

Dual Topology, softcore, δ = 1, n = 0

1 -5.97 0.39 0.18 0.13

2 -6.17 0.39 0.25 0.13

3 -5.92 0.38 0.21 0.13

4 -6.06 0.39 0.24 0.14

5 -5.87 0.39 0.23 0.14

Average -6.00 ± 0.11

a For the average of 5 runs, the error estimate is the 95% confidence
limit of the mean, obtained from the independent simulations. All

the figures are in kcal mol−1

b The free energy change for the perturbation in vacuum has been

substracted. This quantity was 2.69 ± 0.01 kcal mol−1
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Table 6.2: Relative solvation free energy of ethane and methanol
(continued) a

run ∆∆Gsolv Errorgrads Errorblock500K Errorblock100K

Dual Topology, softcore, δ =1, n =2

1 -6.58 0.45 0.21 0.14

2 -6.15 0.44 0.24 0.14

3 -6.05 0.45 0.21 0.13

4 -6.25 0.43 0.20 0.13

5 -5.91 0.44 0.26 0.15

Average -6.19 ± 0.24

Dual Topology, softcore, δ =2, n =1

1 -6.17 0.69 0.41 0.24

2 -6.17 0.69 0.43 0.24

3 -6.68 0.70 0.40 0.22

4 -5.85 0.68 0.33 0.21

5 -5.61 0.66 0.41 0.22

Average -6.10 ± 0.38

The single topology simulation results are within 1 kcal mol−1 of the ex-

perimental figure. The error intervals obtained from the different methods under

or overestimate the confidence limit obtained for 5 independent simulations. The

block averaging methods do not agree with each other. With a block size of 100K

moves, every particle in the box has been moved on average 187 times, but since

preferential sampling was enabled, the water molecules closest to the solute, which

will cause most of the free energy change, have been moved more often than this.

There is no easy way to decide if a block was long enough such that each value

in the distribution is uncorrelated. Nevertheless, a block size of 100K (or 500K)

would be higher than those used in most free energy studies. Thus the method-

ology exhibits sensitivity to the block lengths, which make an estimation of the

reliability of the results problematic.

The dual topology simulations fails to give a converged answer if the solute-

solvent interaction energies are not softened. This is due to the very large fluctua-

tions in the free energy gradient at the end of the λ coordinate, shown in figure 6.3.

The fluctuations are at least two orders of magnitude higher than for other values of

the coupling parameter. This is because at λ = 1.0, the ethane molecule should be
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Figure 6.3: The fluctuations in the free energy gradient during the simulation car-
ried out at λ = 1.0 with the dual topology method and no softening of the solute-
solvent intermolecular interactions. For comparison, the gradients obtained at all
other values of λ are also shown.

completely decoupled from the solvent. As it is bigger than the methanol molecule,

it can overlap partially with neigbouring water molecules. When the energy of the

system is calculated at λ = 0.999 to form the free energy gradients, a strongly re-

pulsive Lennards Jones energy is obtained. Thus, occasionaly some configurations

will exhibit very large gradients. If rare configurations contribute significantly to

the free energy gradients, a very long simulation time will be necessary to obtain

converged results. Note that the errors calculated by the block averaging methods

are higher than those obtained from the free energy gradients method. However

neither method provides error bounds that would overlap with the single topology

results.

By contrast, most dual topology simulation with a softcore enabled yield re-

sults that agree to within error estimates with the single topology results. If the

softcore parameter δ is too small, the Lennard Jones interactions are still too hard

close to λ = 1.0 and most of the change in free energy gradients occurs there, with

large variations, making the calculation imprecise. In ProtoMS2.1, a Monte Carlo

move of the solute consists of the translation and rotation by a random amount

around the molecule axis, followed the random perturbation of the internal degrees

of freedom of the molecule. As mentioned in the previous section, the dual topol-

ogy implementation permits the translation and/or rotation of the two molecules

whose relative free energy change is of interest to be synchronised. Because in the

end states, one of the two solute molecules has been completely decoupled from its
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Figure 6.4: The free energy gradients for the perturbation carried out with various
softcore parameter sets. For the solid line (n=0, δ=1.0), for the dashed line (n=1,
δ=1.0), for the dotted line (n=2, δ=1.0), for the dashed-dotted line (n=1, δ=2.0).

environment, a rigid rotation of the molecule does not affect the potential energy

of the system. Therefore, the free energy change between the two end states should

be identical, whether or not the solute rigid body rotations were synchronised. This

appear to be verified in this system, where the dual topology simulations with no

synchronisation of the solute rotations yield identical answers (within error es-

timates) to the simulations performed without synchronisation. However, over a

sufficiently long simulation time scale, the solvent environment should be insensi-

tive to solute rotations, so it could be argued that the validity of the constraint has

not been demonstrated.

Varying the softcore parameters δ or n modifies the value of the free energy

gradients recorded at different values of λ. However, the final free energy differ-

ence is not affected and integration of the three different profiles yield the same

free energy change (within statistical error). This is of course a consequence of the

fact that the free energy is a state function. By setting n to 0, the solute-solvent

coulombic energy term is linearly scaled (and shifted by λ ) during the simulation.

This means the coulombic energy of methanol is restored more evenly throughout

the simulation, while with a parameter n of 1 or 2, it would appear more abruptly

at the end of the simulation. This should cause the free energy gradients to vary

more rapidly towards the end of the simulation. This is observed in the plot of the

free energy gradients for different values of the softcore parameters in figure 6.4.

When δ is increased from 1.0 to 2.0, the free energy gradients profile exhibits a
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Figure 6.5: The error on the free energy gradients for the perturbation carried
out with various softcore parameter sets . For the solid line (n=0,δ=1.0), for the
dashed line (n=0,δ=1.0), for the dotted line (n=2,δ=1.0), for the dashed-dotted line
(n=1,δ=2.0).

more complex behavior, with two inflexion points at λ = 0.40 and λ = 0.80. This

more complex free energy gradient profile may be more inaccurately integrated by

numerical integration schemes than the other plots.

In figure 6.5, the calculated error (obtained with the error calculation method

based on the distribution of the free energy gradients) in the free energy gradients

along λ for the three different protocols is plotted. The plot illustrate that when the

rate of change of the free energy gradients increase, so does the calculated error

interval. The simulations carried out with the softcore parameter n = 0 and δ = 1.0

has the smoothest profile. The error on the free energy gradients is also similar

across λ, while the decrease in free energy gradients observed at the end of the

simulation correlates with an increase of the error interval.

Increasing the softcore parameter δ to 2.0 causes the error obtained by gradi-

ents and block analysis to increase. In figure 6.5 the fluctuations in the free energy

gradients for a simulation conducted with parameters (δ = 1.0, n=1) and (δ = 2.0,

n=1) can be compared. It is seen that the error on the free energy gradients is

systematically higher across the entire range of the coupling parameter λ.

In addition, a plot of the replicas exchanged at different values of the coupling

parameter λ during simulations performed with different softcore parameter sets

are shown in figure 6.6. When the simulation is performed with the parameter set

(n=0, δ=1.0) the replicas exchange freely across λ. When n is increased to 1 or
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2, the replicas at λ 0.8-1.0 do not exchange as well with the rest of the system

and tend rather to exchange between themselves. This suggest that the equilibrium

distributions in the range of the coupling parameter λ 0.8-1.0 differ more from

those at lower values of λ. This is because the coulombic energy of methanol

is restored more abruptly at the end of the simulation when n is set to 1 or 2,

compared with n set to 0. Finally, the RETI plot is more sparse across all values

of λ when δ is set to 2.0, meaning that the acceptance rate for the exchange of two

replicas is lower on average than if the simulation was conducted with δ set to 1.0.

This is likely to be observed because, as δ increases, the solutes are made softer,

which allows the surrounding solvent molecules to occupy a larger portion of the

volume of space that would be occupied by the hard molecule. For reference, the

RETI plot obtained with the single topology method is also shown in figure 6.6.

All the replicas can exchange well and visit a wide range of λ values.

From all the observations reported in this section, the following observations

can be drawn.

1. The shape of the free energy profile and the ease by which a free energy

difference is calculated can be dramatically controlled through the parameter

n and δ.

2. If a non-polar molecule is perturbed into a polar molecule, it is better to

spread the increase in coulombic energy across the whole coupling param-

eter, rather than restore it abruptly at the end of the simulation. This can be

done by setting n to a small integer.

3. If the value of δ is too small, the soft-core will be too hard and behaviour

similar to a dual topology simulation without softcore will be observed (e.g,

large fluctuation in the free energy gradients at the end states). If the value of

δ is too large, the softcore will be too soft and this will make the free energy

calculation harder as the volume of the two solute molecules will vary more.

4. The error analysis method based on the free energy gradients tends to over-

estimate the true uncertainty in the simulation outcome. The error analysis

method based on block averaging is sensitive to the number of blocks used
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0 50 100 150 200 250
MC moves (x100K)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

λ

(d) n=1, δ=2.0

0 50 100 150 200 250
MC moves (x100K)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

λ

(e) single topology

Figure 6.6: The exchange of replicas during the free energy simulation for different
values of the softcore parameter set.

(often chosen arbitrarily) and tends to underestimate the true uncertainty in

the simulation outcome.

Finally, from this set of results the author formed an opinion of the conditions

an ideal free energy gradient profile should fill:

1. The free energy gradients profile should be smooth and flat over the coupling
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parameter λ. The free energy difference is obtained from integration of this

profile, and a smoother profile can be integrated by a trapezium or Simpson

rule accurately with less points than a complex, rapidly changing profile.

2. The errors on each individual free energy gradient should be as small as

possible. This will depend on how rapidly the total energy of the system

change with a small increment (or decrement) of λ by dλ.

3. The equilibrium density of state of the systems run at different values of

the coupling parameter λ should be as similar as possible. This will allow

the RETI method to exchange replicas at different values of the coupling

parameter λ easily. If that is not the case, the benefits of the RETI method

will be lessened. Inevitably, there are differences in the density of states at

λ = 0.0 and λ = 1.0. But it is better to ”spread” this change evenly at each

window than to have all the difference occur at a single value of λ.

There should be some degree of equivalence between all these conditions. For

example, a smooth free energy profile is likely to mean that replicas can exchange

readily. The observations reported in this section should prove useful to investigate

optimum parameter sets for the softcore across different systems.

6.4.2 Relative solvation free energy of benzene, ethane andmethanol

In addition to the calculation of the relative solvation free energy of ethane and

methanol, the relative solvation free energy of benzene and methanol was calcu-

lated with the dual topology approach. Such a perturbation would be difficult (but

not impossible) to set up for a single topology method as the geometry of the two

solute molecules is quite different (planar ring and linear molecule). By contrast,

the setup of such calculation with the dual topology method is no more complex

than the setup of the perturbation of ethane to methanol. Because the method re-

quires less user interaction, it could be more readily automated, which would be a

requirement to make high throughput free energy simulations practical. The rela-

tive solvation free energy of benzene to ethane was also calculated by the same ap-

proach. This allows us to close a thermodynamic cycle involving benzene, ethane
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and methanol and thus permit the degree of convergence of the simulation results

to be assessed.

A protocol identical to the previous section was employed for these calcu-

lations with the exception that the system was solvated with 526 TIP4P waters,

instead of the 533 TIP4P water used in the previous section.

The simulation results are summarised in table 6.3. For reference, the exper-

imental relative solvation free energy of benzene to ethane is +2.9 kcal mol−1

and the experimental relative solvation free energy of benzene to methanol is -4.0

kcal mol−1.115
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Table 6.3: Relative solvation free energy of benzene, ethane and
methanola

run ∆∆Gsolv Errorgrads Errorblock500K Errorblock100K

Benzene to methanol

Dual Topology, softcore, δ = 1, n = 1

1 -4.08 0.73 0.37 0.23

2 -3.28 0.68 0.31 0.20

3 -3.55 0.74 0.52 0.28

4 -3.64 0.72 0.41 0.24

5 -3.87 0.71 0.36 0.21

Average -3.68 ± 0.29

Dual Topology, softcore, δ = 1, n = 1, do not sync rotations

1 -3.44 0.65 0.35 0.20

2 -3.62 0.67 0.37 0.21

3 -3.38 0.65 0.32 0.20

4 -3.86 0.64 0.38 0.23

5 -3.77 0.63 0.26 0.17

Average -3.61 ± 0.20

Dual Topology, softcore, δ = 2, n = 1

1 -4.38 0.80 0.38 0.24

Benzene to ethane

Dual Topology, softcore, δ =1, n =0

1 +2.93 0.51 0.30 0.17

2 +2.88 0.47 0.25 0.15

3 +3.32 0.47 0.26 0.15

4 +2.87 0.50 0.29 0.16

5 +2.96 0.48 0.20 0.14

Average +2.99 ± 0.18

a For the average of 5 runs, the error estimate is the 95% confidence
limit of the mean, obtained from the independent simulations. All

the figures are in kcal mol−1

In the perturbation of benzene to methanol, simulations carried out with or

without synchronisation of the solute rigid body rotations give the same free en-

ergy difference. In the later case, it is interesting that the different error analysis

methods and the confidence interval on the distribution of free energies obtained

from independent simulations are systematically smaller. Intuitively, the opposite

results would have been expected as it was thought that synchronisation of the rigid
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body rotations of the two solutes should lead to better convergence of the calcu-

lated free energy changes. Also, increasing δ to 2.0 increase the error measure on

a single simulation, but to a lesser extent than in the previous system. The most

precise predicted free energy change is -3.61 ± 0.20 kcal mol−1, which slightly

underestimates the experimental figure.

The perturbation of benzene to ethane is easier to conduct and yields a free

energy change of +2.99 ± 0.18 kcal mol−1, which is in excellent agreement with

the experimental figure.

Taking the free energy change of ethane to methanol from the previous sec-

tion as -6.03 ± 0.16 kcal mol−1, the closure of the thermodynamic cyle is 0.57

kcal mol−1. This quantity appears reasonable, given the error bounds on each in-

dividual simulation. Since the predicted relative solvation free energy of benzene

to ethane is in good agreement with the experimental figure, and the predicted

relative solvation free energy of benzene to methanol and ethane to methanol un-

derestimate the experimental figure by 0.3 and 0.9 kcal mol−1 respectively, this

suggests that the main origin of the discrepancy with the experiment is in the model

of methanol. Since the GAFF Lennard Jones parameters for methanol are typical

of existing biomolecular force fields, and that other force fields such as OPLS

achieve very good agreement with the experimental relative solvation free energy

of ethane to methanol,177 the source of the discrepancy is likely to be found in the

atomic partial charges generated by the AM1/BCC method.108

6.5 Binding free energy calculations

6.5.1 Relative binding free energy of celecoxib analogues

System setup

The methodology employed in the previous section was applied to the relative

binding free energy calculation of the two analogues of celecoxib 8 and 1, bound

to cyclooxygenase-2 (see figure 6.7). This system was selected because it was ob-

served to yield relatively precise binding free energies with the single topology

method, by implicit or explicit solvent approaches, and was extensively studied
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Figure 6.7: The hydroxyl analogue 8 is perturbed into celecobix (1) .

in chapter 3 and 4. The single topology simulations were performed with a pro-

tocol similar to that reported in chapter 4. In the dual topology simulations, the

rigid body rotation and translation of the two solutes were coupled together. This

is because, unlike in the relative solvation free energy calculations reported in the

previous section, the solute translational motion must be enabled to yield correct

sampling of the binding site, and without such coupling, one of the two solutes

could float freely off the binding site at the end states, which would lead to diver-

gence of the free energy gradients.178 The protein-ligand complex or the ligand

solvated in explicit water was equilibrated at a value of λ = 0.50 for 30M moves.

Each simulation carried out at a value of λ was equilibrated for 10M moves and

data was collected for 60M moves. This is twice the number of moves performed

with the single topology method but was judged necessary because the free energy

gradients were seen to fluctuate more readily (see next subsection).

Explicit solvent simulations

Because the computational expense for each binding free energy calculation was

higher than the solvation free energy calculations, each simulation protocol was

repeated only three times. The results are presented in table 6.4.
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Table 6.4: Relative binding free energy of 8 and 1a

run ∆∆Gsolv Errorgrads Errorblock1M Errorblock500K

Single Topology, unbound state

1 18.04 0.36 0.22 0.20

2 18.56 0.37 0.20 0.18

3 18.59 0.36 0.19 0.16

Average 18.40 ± 0.51

Single Topology, bound state

1 14.99 0.15 0.10 0.08

2 15.24 0.16 0.09 0.09

3 14.95 0.16 0.09 0.08

Average 15.06 ± 0.26

Dual Topology, softcore, δ = 1.5, n = 0, unbound state

1 5.57 1.18 0.69 0.59

2 5.44 1.19 0.82 0.65

3 4.40 1.21 0.86 0.67

Average 5.14 ± 1.08

Dual Topology, softcore, δ = 1.5, n = 0, bound state

1 2.92 0.82 0.57 0.45

2 1.27 0.82 0.43 0.36

3 3.02 0.85 0.50 0.41

Average 2.40 ± 1.65

a For the average of 3 runs, the error estimate is the 95 % confi-
dence limit of the mean, obtained from the independent simula-

tions. All the figures are in kcal mol−1

The single topology results are well behaved, in the bound and unbound state.

A relative binding free energy of -3.34 ± 0.57 kcal mol−1 can be estimated from

the results. This is similar to the value that was obtained previously in chapter

4. By contrast, the dual topology simulation results are disappointing. The error

estimates are larger, and the spread of the simulation results make the calculation

imprecise. This is even though the simulation length of each individual window

was twice as long as for the single topology simulations. From the 3 independent

simulations, a relative binding free energy of -2.74± 1.97 kcal mol−1 is estimated.

Thus the two methods appear to give the same answer, although the imprecision on

the dual topology method is such that definitive conclusions are difficult to draw.
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Figure 6.8 shows the free energy gradients collected for this perturbation with

both methodologies. It can be seen that the free energy gradient profile obtained

with the single topology method is smooth and reproduced to within statistical er-

ror by independent runs, except perhaps at λ = 1.0. By contrast, in the dual topol-

ogy method the free energy gradients vary sharply, particularly for the perturbation

in the unbound state between λ 0.4 and λ 0.6. Even though this represents a fairly

large change in gradients, its impact on the free energy change is small. This is

because the area under the curve between λ 0.4 to 0.5 is similar to the area be-

tween λ 0.5 and 0.6. The former contributes negatively to the free energy change

while the later contritubes positively. Of bigger concern is that the statistical error

for individual free energy gradients are 5 to 10 times larger (this is not evident on

figure 6.8 because of the scale of the plots) and the free energy gradient profile

not as reproducible. This is even though twice as many Monte Carlo moves were

employed in the dual topology simulations.
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Figure 6.8: Free energy gradients collected during the perturbation of 8 into 1 in the
bound (solid line) and unbound (dashed line) state. Three independent simulations
are plotted and the error bars are shown.

(a) Single topology (b) Dual topology, δ = 1.5, n = 0

Figure 6.9 highlights that the perturbation of 8 into 1 is considerably more

difficult with the dual topology approach. With the single topology method, repli-

cas can exchange well across the whole coupling parameter because the perturbed

states are relatively similar. This is no longer the case in the dual topology method

and the rate of exchange of replicas drops dramatically and is such that it is very
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difficult to exchange replicas across the middle of the coupling parameter.

0 50 100 150
MC moves (x200K)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.95

1.00

λ

(a) single topology, bound

0 50 100 150
MC moves (x200K)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.95

1.00

λ

(b) single topology, unbound
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Figure 6.9: The exchange of replicas during the perturbation of compound 8 into
1 in the bound and unbound state with the single and dual topology methodology.

These results constrast sharply with those reported in the section on relative

solvation free energy calculations of ethane and methanol, where a comparable rate

of exchange of replicas was achieved with the dual and single topology methods,

provided the softcore parameters were optimised for the system.

It was hypothethised that much of the difficulty in the dual topology simu-

lations arise from the fact that the intermolecular coulombic and Lennard-Jones

energy have to be decoupled simultaneously. In an effort to verify this assumption,

a more complex thermodynamic cycle was devised. As can be seen in figure 6.10,

the cycle involves the electrostatic discharging of 8, followed by Lennard Jones

decoupling of 8 while the interactions of 1 with the system are turned on simulate-

nously. The last step consists of charging 1. When this series of simulations is run

in the bound and unbound state, the difference of the sum of the free energy along

each pathway will yield the relative binding free energy of 8 and 1. Because the
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Figure 6.10: A thermodynamic cycle that breaks down the perturbation of ligand A
into ligand B into three different steps. The term LJ and Coul refers to the ligands
intermolecular Lennard Jones and the ligand intermolecular and intramolecular
Coulombic energy respectively. To obtain a binding free energy, the cycle must be
applied twice, in aqueous environment and in the solvated protein.

charging/discharging steps involve only one ligand, they were performed with the

single topology method, while the Lennard Jones decoupling was performed with

the dual topology method. All the simulations were equilibrated for 10M moves

and data was collected for 30M moves. The results are presented in table 6.5.
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Table 6.5: Relative binding free energy of 8 and 1a by the three
step cycle.

run ∆∆Gsolv Errorgrads Errorblock1M Errorblock500K

Discharging 8, unbound state

1 165.15 0.61 0.54 0.41

2 165.51 0.61 0.37 0.29

3 165.15 0.63 0.40 0.31

Average 165.27 ± 0.35

Discharging 8, bound state

1 162.65 0.39 0.24 0.19

2 162.44 0.37 0.26 0.20

3 162.25 0.36 0.22 0.19

Average 162.45 ± 0.34

Exchange of 8 and 1 δ = 1.0, unbound state

1 1.95 1.25 1.08 0.85

2 0.63 1.03 0.64 0.53

3 0.93 1.06 0.89 0.72

Average 1.17 ± 1.16

Exchange of 8 and 1 δ = 1.0 , bound state

1 2.00 1.33 0.90 0.78

2 1.07 1.31 1.00 0.80

3 2.08 1.22 0.96 0.74

Average 1.72 ± 0.94

Discharging of 1, unbound state

1 147.26 0.58 0.34 0.27

2 147.29 0.58 0.44 0.34

3 147.95 0.60 0.36 0.28

Average 147.50 ± 0.66

Discharging of 1, bound state

1 147.71 0.36 0.23 0.19

2 147.83 0.38 0.23 0.18

3 148.06 0.37 0.21 0.17

Average 147.87 ± 0.30

a For the average of 3 runs, the error estimate is the 95 % confi-
dence limit of the mean, obtained from the independent simula-

tions. All the figures are in kcal mol−1

From these results, a binding free energy difference of -2.64± 1.73 kcal mol−1

can be estimated. This once again agrees with the previous dual topology and sin-
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gle topology results, but the results are still very imprecise. The steps involving

discharging of either ligands yield very large free energy changes. This is because

the intramolecular coulombic energy of the ligand is turned off and the magni-

tude of this term is larger than the intermolecular coulombic energy of the ligand.

Despite the large free energy change, the results are fairly precise. Smaller free en-

ergy changes could be obtained if only the intermolecular coulombic energy was

turned off. This would have the advantage that at the beginning or end of the cy-

cle, one ligand would be in the ideal state. This is however, not possible with the

single topology method in its current implementation in ProtoMS21. In addition,

it is the exchange of the two uncharged ligands with the dual topology method

that yield the most imprecise results. The free energy gradients plot for this per-

turbation, seen in figure 6.11(a) is not very different from the free energy gradient

plot obtained with a direct perturbation of 8 into 1. This shows that most of the

difficulty in the calculations arise from the intermolecular Lennard Jones energy.

This more elaborate thermodynamic cycle yields additional insights into the bind-

ing of compounds 8 and 1. From the differences in free energy along each step of

the pathway, it can be seen that the largest contribution to the binding free energy

comes from the less favourable electrostatic environment in the protein for 8. This

is not unexpected as the hydroxy group of 8 cannot donate or receive a hydro-

gen bond with the position it adopts in the binding site of COX-2. Compound 1

may also experience stronger Lennard Jones interactions in the binding site of the

protein, but the benefits are small, and uncertain given the error estimates.

With the following observations in mind, the direct simulation of 8 into 1 was

repeated with the parameter δ adjusted to 1.25.
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Table 6.6: Relative binding free energy of 8 and 1a

run ∆∆Gsolv Errorgrads Errorblock1M Errorblock500K

Dual Topology, δ = 1.25, n = 0, unbound state

1 4.69 0.97 0.60 0.48

2 3.91 0.93 0.54 0.48

3 4.26 0.92 0.57 0.48

Average 4.29 ± 0.66

Dual Topology, δ = 1.25, n = 0, bound state

1 2.87 0.77 0.42 0.36

2 2.20 0.79 0.55 0.42

3 0.87 0.76 0.50 0.38

Average 1.98 ± 1.71

Dual Topology, δ = 1.5, n = 0, no torsions, unbound state

1 5.51 1.18 0.71 0.59

2 3.71 1.16 0.65 0.55

3 5.14 1.16 0.84 0.65

Average 4.79 ± 1.59

Dual Topology, δ = 1.5, n = 0, no torsions, bound state

1 1.80 0.73 0.48 0.38

2 -0.68 0.74 0.38 0.31

3 0.13 0.75 0.46 0.38

Average 0.42 ± 2.12

a For the average of 3 runs, the error estimate is the 95 % confi-
dence limit of the mean, obtained from the independent simula-

tions. All the figures are in kcal mol−1

The simulations performed with the softcore parameter δ set to 1.25 would

yield a binding free energy difference of -2.31 ± 1.83 kcal mol−1. As seen in fig-

ure 6.11(b), the free energy gradient profile is very different from that one recorded

with δ set to 1.0 or 1.5 and shows how this parameter strongly affect the free energy

gradients. It was thought that the ensemble of configurations the ligands would

adopt when they are interacting with a protein/aqueous environment could be very

different from those it would adopt in an ideal gas state. If this is indeed the case,

one could expect to have difficulties in obtaining converged free energy gradients,

particularly towards the end states. To examine this hypothesis, the simulations

were repeated with no sampling allowed on the torsional degrees of freedom of

the ligands. As a result, the two ligands are much more rigid (with only rigid body
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rotation/translation and bond angles being sampled) and cannot adopt configura-

tions different from those observed in the binding site. Surprisingly, this does not

make the perturbations any easier, with the simulation results still very inconsis-

tent. The free energy gradients profile, shown in figure 6.11(c) is similar to that

obtained when torsional flexibility is allowed (figure 6.8).
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(c) δ = 1.5, n=0, no torsions

Figure 6.11: Free energy gradients collected during the perturbation of 8 into 1 in
the bound (solid line) and unbound (dashed line) state with three different proto-
cols for the dual topology simulations. Three independent simulations are plotted
and the error bars are shown.

The observations presented in this section lead us to the following conclusions:

1. The dual topology methodology performs poorly in comparison to the sin-

gle topology method for the calculation of the relative binding free energy

of similar ligands. This behaviour was not observed when perturbing small

molecules to calculate their relative solvation free energy. The ligands are

much larger than these small molecules and exhibit several degrees of free-

dom. In the single topology simulations, the perturbed states overlap very
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well with the reference states because most of the internal degrees of free-

dom of the ligand are sampled synchronously. By contrast, in the dual topol-

ogy simulations, the two molecules, representatives of the end states, have

their internal degrees of freedom sampled independently. This reduces the

overlap of the equilibrium density of states of the two molecules and in-

creases the number of Monte Carlo moves required to obtain good conver-

gence of thermodynamic properties.

2. This problem is also magnified by the softening of the intermolecular inter-

actions of the whole solute. In particular, because the Lennard Jones term is

softened, the accessible volume of the ligands varies significantly through-

out the simulation and additional sampling is required to cover these regions.

Implicit solvent simulations

In the previous section, it was seen that the perturbations in the unbound state were

often as difficult or more difficult to converge reliably free energy differences.

The implicit solvent approach, successfully applied in the previous chapters of

this thesis, avoids these difficulties. It is thus of interest to test the dual topology

method in combination with a Generalised Born Surface Area force field. The

current implementation of dual topology in ProtoMS21 does not support surface

area calculations for the dual topology solutes. Because we are mainly interested in

comparing single and dual topology results on this system, rather than relating the

calculated quantities to experimental observables, surface area calculations were

not included in the implicit solvent simulations (for either single or dual topology).

The protocol employed to carry out these simulations was similar to that re-

ported in chapters 3 and 4, except that, following pre-equilibration at λ = 0.50,

each simulation performed at one value of the coupling parameter λ was further-

equilibrated for 300 K moves and data was collected for 1.8 M moves.

The simulation results are summarised in table 6.7.
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Table 6.7: Relative binding free energy of 8 and 1a

run ∆∆Gsolv Errorgrads ErrorblockA ErrorblockB

Single Topology , unbound state

1 19.59 0.09 0.03 0.02

2 19.63 0.08 0.03 0.03

3 19.63 0.09 0.02 0.03

Average 19.62 ± 0.04

Single Topology, bound state

1 17.44 0.17 0.15 0.12

2 17.59 0.17 0.09 0.07

3 17.64 0.17 0.18 0.12

Average 17.56 ± 0.17

Dual Topology, unbound state

1 6.01 0.14 0.07 0.05

2 6.00 0.13 0.05 0.04

3 6.02 0.12 0.08 0.04

Average 6.01 ± 0.02

Dual Topology, δ = 1.25, n = 0, bound state

1 3.86 0.87 0.74 0.56

2 3.65 0.82 0.76 0.52

3 3.30 0.85 0.66 0.49

Average 3.60 ± 0.48

Dual Topology, δ = 1.25, n = 0, bound state, rigid protein

1 4.07 0.76 1.04 0.61

2 3.58 0.81 1.06 0.63

3 3.04 0.83 0.95 0.63

Average 3.56 ± 0.87

a For the average of 3 runs, the error estimate is the 95 %
confidence limit of the mean, obtained from the independent

simulations. All the figures are in kcal mol−1

The single topology are very well behaved and precise. The perturbation of

8 into 1 in the unbound state was the major source of imprecision in the explicit

solvent simulations. Understandably, no such difficulties are seen when the aque-

ous environment is represented by an implicit medium. The relative binding free

energy is found to be -2.06 ± 0.18 kcal mol−1.

The dual topology simulation in the unbound state yields a very precise free

energy change of 6.01 ± 0.02 kcal mol−1. Recalling that this figure corresponds
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to the relative solvation free energy (without a surface area dependent term in this

calculation), it is interesting to compare this quantity with what would be obtained

with the single topology results. This requires us the substraction of the free energy

change for the perturbation of 8 to 1 in vacuum from the free energy change for

the perturbation in the GB force field. The former is found to be 13.54 ± 0.08

kcal mol−1 while the later is reported in table 6.7 and is 19.62± 0.04 kcal mol−1.

The relative solvation free energy would then be 6.08 ± 0.09 kcal mol−1, which

agrees with the dual topology results to within statistical error.

With an estimated free energy change of 3.60 ± 0.48 kcal mol−1, the per-

turbation in the bound state is more precise than the results obtained previously.

However, the error estimates from the single run are similar to those obtained with

an explicit solvent simulation and it is likely that lower spread of the results is an

artefact of the small sample size (3). The relative binding free energy is found to

be -2.41 ± 0.49 kcal mol−1, which agrees with the single topology results.

With an implicit model of water, the possibility of performing a free energy

simulation with a rigid protein environment has been hinted at in chapter 4 and 5.

Here such a calculation is reported with the dual topology method and is found to

yield essentialy identical results. Disappointingly, the errors are as large or larger

than when protein side chain flexibility is taken into account. This give strength to

the view that the major difficulty in the dual topology method lies in the thorough

sampling of the configurational space available to the ligand.

6.5.2 Relative binding free energy of diclofenac and celecoxib

System setup

In the previous section we have demonstrated that equivalent answers can be ob-

tained with the dual and single topology methods for the relative binding free

energy calculation of two congeneric inhibitors. The single topology method was

seen to yield more precise answers with less computational resources and should

therefore be favoured when applicable. However, by construction, the single topol-

ogy method requires the internal degrees of freedom of one solute to be perturbed

into those of another. This is a relatively simple task when the two solutes of in-
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Figure 6.12: The drug diclofenac is perturbed into the drug celecoxib.

terest are structurally similar, but becomes increasingly difficult if the two solutes

exhibit different chemical topologies. By contrast, the dual topology method re-

quires no such information and the difficulty of setting up the simulation is not a

function of the structural differences between the two solutes (although it could

certainly affect the rate of convergence of the thermodynamic properties). As a

proof of principle, we consider the perturbation of the drug diclofenac into the

drug celecoxib, illustrated in figure 6.12. These two drugs have been used for the

treatment of pain and are important pharmaceutical compounds. The potency of

these drugs is often obtained by measuring an IC50, which represents the con-

centration necessary to inhibit 50% of the enzymatic activity. IC50 can be related

to binding free energies, using the Cheng-Prusoff equation.161 Unfortunately, the

measurement of one IC50 is very sensitive to the experimental protocol employed

and the reported IC50 of the same ligand can vary by several orders of magnitude,

depending on the assay conditions.179,180 Thus it is difficult to relate the IC50 of

inhibitors reported in different studies and it might be best to avoid converting

those to an absolute binding free energy. Both diclofenac and celecoxib are known

inhibitors of COX2. Their IC50 against COX2, obtained with the same assay con-

ditions was established at 0.075 µM and 0.34 µM respectively.181 This suggest

very roughly that their relative binding free energy should be in the range of± 1-2

kcal mol−1.

A monomer of COX-2 complexed to the drug diclofenac was extracted from
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the PDB structure 1PXX.182 The structure was then aligned onto a monomer

of COX-2 complexed to the brominated analogue of celecoxib (PDB structure

1CX2).150 Celecoxib occupies a larger volume of the binding site and diclofenac

is seen to occupy mainly the southern edges of the binding pocket. There is little

backbone motion between the two different binding sites, and several amino acid

side chains adopt the same conformation in the two binding sites. The main dif-

ferences are seen between His90 and Arg120. In addition, the orientation of the

hydroxyl group of Tyr348 and Ser530 differs. In the structure of diclofenac, two

crystallographic waters are seen to interact with the ligand, and one of them is

making strong hydrogen bonds to the carboxyl group of diclofenac. No crystallo-

graphic waters are present in the complex of the brominated analogue of celecoxib

with COX-2. This is not evidence that these two water molecules have been ex-

pelled from the binding site however, as it might be an artefact of the structure

refinement by the crystallographers.

The explicit solvent simulation methodology might prove difficult in this sys-

tem as it is not clear how the two crystallographic waters should be considered.

An implicit solvent framework simplifies the task but may lead to qualitatively

wrong answers if specific water-solute interactions are important for the binding

of diclofenac. Since the present focus of this work is on the feasibility of such free

energy perturbation, concerns about accuracy of the model of the protein-ligand

interactions were ignored.

Models of diclofenac (λ = 0.0) and celecoxib (λ = 1.0), in the conformation

they adopt when bound to COX-2, were loaded in a modified version of Pro-

toMS21. An equilibrated protein scoop of COX-2, used in chapter 4 and 5 was

further equilibrated for 600 K moves at a value of λ = 0.50. The resulting con-

figuration was distributed over 12 simulations at different values of the coupling

parameter (λ = 0.00, 0.10, .., 0.90, 0.95, 1.00). In the bound state, each simulation

was equilibrated for 600 K moves prior to 1.8 M moves of data collection. The po-

sition of the heavy atoms in the backbone of the protein was frozen. In the unbound

state, each simulation was equilibrated for 2Kmoves before collecting data for 200

K moves. The parameters for the GB force field, the non bonded interactions and

the move probabilities were identical to those used previously. Simulations were
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Figure 6.13: Overlay of the binding site of diclofenac (PDB code 1PXX) and the
binding site of the brominated analogue of celecoxib (PDB code 1CX2). In blue,
the binding site of diclofenac and in cyan diclofenac. In red, the binding site of the
celecoxib and in orange, celecoxib. In yellow, two crystallographic waters present
in the binding site that interact with diclofenac.
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the protein is rigid were also considered. In this case, only solute moves were at-

tempted. Each simulation was equilibrated for 50 K moves and data collected for

500 K moves.

Results

Table 6.8: Relative binding free energy of diclofenac and
celecoxiba

run ∆∆Gsolv Errorgrads ErrorblockA ErrorblockB

Dual Topology, unbound state

1 42.10 0.10 0.05 0.03

2 42.11 0.10 0.05 0.03

3 42.14 0.10 0.07 0.03

Average 42.12 ± 0.03

Dual Topology, δ = 1.25, n = 0, bound state

1 28.55 1.07 1.01 0.78

2 27.55 1.31 0.89 0.71

3 28.20 1.11 0.70 0.55

Average 28.10 ± 0.85

Dual Topology, δ = 1.25, n = 0, bound state, rigid protein

1 -31.39 1.01 1.50 0.89

2 -28.23 1.22 1.64 0.85

3 -27.94 1.00 1.26 0.73

Average -29.19 ± 3.22

a For the average of 3 runs, the error estimate is the 95 %
confidence limit of the mean, obtained from the independent

simulations. All the figures are in kcal mol−1

The simulation results are summarised in table 6.8. The free energy change in

aqueous environment is 42.12 ± 0.03 kcal mol−1. This quantity is very large and

understood because diclofenac is negatively charged while celecoxib is neutral.

Thus solvation of diclofenac is thermodynamically favoured.

The free energy change in the protein environment is 28.10± 0.85 kcal mol−1.

This suggest a relative binding free energy of -14.02 kcal mol−1. As noted in the

system setup section, there are uncertainties in relating measured IC50 to binding

free energies. However, any difference of more than a few kcal mol−1 would be

unreasonable, and thus celecoxib is much too favoured by the present force field.
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In addition, a non bonded cutoff of 10 Å is probably not sufficient to handle

correctly the change in long range electrostatic interactions, which almost cer-

tainly will be significant as one net charge is annihilated in the present perturba-

tion. Finally, when perturbing closely structurally related ligands, one can hope to

benefit from cancellation of errors in the force field parameters, particularly the

torsional potentials. This would no longer be the case when dealing with differ-

ent ligands and thus, obtaining accurate answers would be a challenge for modern

biomolecular force fields. Rather than focusing on the accuracy of the present sim-

ulations, we wish to emphasis their precision. The spread of the results is less than

1 kcal mol−1, suggesting that reasonably precise estimates of free energy changes

can be obtained with the current protocol. In addition, the error on these calcula-

tions is similar to those reported in the perturbation of 8 into 1. By contrast, build-

ing a zmatrix that would allow diclofenac to be perturbed into celecoxib would be

a feat and almost impossible to automate by the single topology method.

Finally, we note that if no protein sidechain motion is allowed, the free energy

change varies dramatically, to favour celecoxib by 71.3± 3.22 kcal mol−1. This is

because residues Tyr348 and Ser350 have to reorient their hydrogen bond donating

groups to interact with diclofenac. In addition, some degree of plasticity of the

binding site is necessary to accommodate the change of shape of the ligand. If

no such motions are allowed, and because the protein model was built from the

crystallographic structure of COX2 complexed with an analogue of celecoxib, it

is not suprising that celecoxib would be more favoured, although the magnitude

of the free energy change is unexpected. Although this was not attempted in this

work, it might be interesting to perform the same calculation with the two ligands

modelled into the binding site obtained from the complex of diclofenac and COX2

(PDB code 1PXX). If sufficient sampling has been performed, the free energies

should be similar.

The present results emphasise that the good predictive power obtained in the

free energy calculations reported in chapter 4 and 5, where no protein flexibility is

allowed, might not be observed in a general case. Presumably, protein flexibility

becomes increasingly important if one is interested in structurally diverse, non

congeneric sets of ligands.
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6.6 Conclusion

An implementation of the dual topology method in ProtoMS21 has been described.

It allows the calculation of free energy differences by a different approach from

the more standard, single topology method. Because a naive implementation of the

dual topology method suffers from numerical instabilities at the simulation of the

end states (at λ 0.00 or λ 1.00), it is necessary to combine the methodology with a

softening of the intermolecular interactions (particularly, the Lennard Jones term).

The protocol is applied to the calculation of the relative solvation free energy of

ethane and methanol, solvated in a box of TIP4P water. Equivalence between the

single and dual topology methods is demonstrated. In addition, it is shown that

the softcore parameters can be optimised such that the imprecision in the calcu-

lated free energy change is minimised. Different methods to estimate errors on the

calculated free energy changes from a single simulation are compared to the con-

fidence interval obtained from the spread of five independent simulations. None of

these methods are found to reliably estimate the true uncertainty. The dual topol-

ogy method is then applied to the calculation of the relative solvation free energy

of benzene, ethane and methanol. The results appear well converged and suggest

that the main source of discrepancy between theory and experiment lies in the

atomic partial charges of methanol, obtained by the AM1/BCC methodology. The

perturbation of benzene into ethane or methanol is achieved trivially with the dual

topology approach, while with the single topology method, it would have been dif-

ficult to convert a linear molecule into a planar, cyclic molecule. The dual topology

method is then applied to the calculation of the relative binding free energy of the

two inhibitors of cyclooxygenase-2, compound 8 and 1. It is shown that the sin-

gle topology method yields much more precise free energy changes than the dual

topology method. This is because these two congeneric inhibitors are structurally

very similar and the perturbation of the ligand is localised onto a small part of

the molecule. Because the dual topology method samples the internal degrees of

freedom of the ligands independently, the free energy difference is a function of

a much larger number of degrees of freedom and requires more configurational

averaging to yield results of similar precision. The single topology method should
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be thus preferred when it is applicable. In addition, it is shown that the optimum

softcore parameters can be system dependent and that the binding of the two lig-

ands can be decomposed into more complex thermodynamic cycles involving a

mixed use of single and dual topology to gain additional insights into the com-

ponents of the relative binding free energy. Finally, the dual topology method can

be combined with the implicit solvent techniques described previously. This elim-

inates completely any inprecision on the contribution of the unbound state to the

calculated relative binding free energy, although the simulation of the bound state

is no easier (on this system). The dual topology method is then applied to the

calculation of the relative binding free energy of two very structurally different

inhibitors of COX2, diclofenac and celecoxib. The simulations fail to calculate an

accurate free energy difference. This can be due to an incorrect treatment of long

range electrostatics, lack of sampling of the protein degrees of freedom, and im-

proper torsional parameters for the ligands. However, the results are essentially

as precise as those obtained in the perturbation of the two congeneric, celecoxib

analogues, suggesting that the present methodology can be applied to investigate

the binding of structurally different compounds. Finally, it is shown that while the

incorporation of protein flexibility was not very important when calculating the

relative binding free energy of similar ligands, it appears necessary to deal with

structurally different compounds.



Chapter 7

Concluding remarks

“A poet once said ”The whole universe is in a glass of wine”. We

will probably never know in what sense he meant that, for poets do not

write to be understood. But it is true that if we look at a glass closely

enough we see the entire universe. There are the things of physics: the

twisting liquid which evaporates depending on the wind and weather,

the reflections in the glass, and our imaginations adds the atoms. The

glass is a distillation of the Earth’s rocks, and in its composition we

see the secret of the universe’s age, and the evolution of the stars.

What strange array of chemicals are there in the wine? How did they

come to be? There are the ferments, the enzymes, the substrates, and

the products. There in wine is found the great generalization: all life is

fermentation. Nobody can discover the chemistry of wine without dis-

covering, as did Louis Pasteur, the cause of much disease. How vivid

is the claret, pressing its existence into the consciousness that watches

it! If our small minds, for some convenience, divide this glass of wine,

this universe, into parts - physics, biology, geology, astronomy, psy-

chology, and so on - remember that Nature does not know it! So let us

put it all back together, not forgetting ultimately what it is for. Let it

give us one more final pleasure: drink it and forget it all!”

Richard P. Feynman
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In the pharmaceutical industry it is commonly viewed that free energy calcu-

lations are too time consuming to be of practical use as a tool for drug design.

This is mainly because multiple simulations of several tens of millions of Monte

Carlo moves are necessary to obtain binding free energies with a precision similar

to those measured experimentally. The severe requirement on the amount of sam-

pling is due in part to the necessity of averaging the free energy over the degrees

of freedom of several thousands solvent molecules that solvate the protein-ligand

complex.

This research set out with the idea of combining the successful theories of

implicit solvation with the rigorous statistical mechanics framework that allows

the calculation of free energy changes. By treating the solvent as a continuous

medium, the complexity of the systems is greatly reduced and the number of

Monte Carlo moves required to obtain converged free energies is dramatically

reduced. The method should therefore provide a means to obtain precise free en-

ergies more rapidly, hence allowing a larger number of compounds to be studied

in the same amount of time. There is considerable evidence in the literature that

implicit theories of solvation, when properly parameterised, yield solvation free

energies in good agreement with explicit solvent simulations. However, few pub-

lished studies have attempted to calculate binding free energies in protein-ligand

complexes solvated implicitly. It is therefore important to test the accuracy of the

calculated binding free energies with this protocol, and compare them with the

results obtained by more established methods.

In chapter 2, a protocol for the calculation of relative binding free energies in an

implicit solvent was proposed. The protocol relies on the AMBER34 and GAFF107

force fields and a GBSA theory of implicit solvation.96 Because no suitable pa-

rameterisation of a GBSA force field that covers chemical groups commonly en-

countered in drug-like molecules was available for the GAFF force field, initial

efforts were focused on the derivation of appropriate parameter sets. This work

followed standard parameterisation protocols available in the literature.117,118 The

validation of the top performing parameter sets was carried out by calculating po-

tentials of mean force for the association of several small molecules in solution.

The small molecules were chosen so as to encompass a wide variety of intermolec-
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ular interactions. Interestingly, deficiencies in standard parameterisation protocols

were identified and means to overcome those were suggested. This work has thus

produced optimum parameter sets for a GBSA/GAFF force field and highlighted

methodological issues in GBSA force field parameterisation. The results of this

study were published under the title “The parameterization and validation of gen-

eralized Born models using the pairwise descreening approximation”, in the Jour-

nal of Computational Chemistry.100

In chapter 3, the combination of Generalised Born algorithms with Monte

Carlo sampling for the calculation of relative binding free energies in protein lig-

and complexes was considered. Initial results proved disappointing. Because of

the non local nature of the GBSA energy, the two methods do not integrate well

and lead to a dramatic loss of efficiency when the methodology is applied to larger

systems. These issues were resolved by introducing approximations in the calcu-

lation of the GB energy and specialised Monte Carlo acceptance tests that permit

the thermodynamic properties of the system in a GBSA force field to be calcu-

lated while using simpler, more efficient, theories of solvation. The approxima-

tions were carefully tested and found to have a minor or negligible impact on the

calculated binding free energies. The resulting protocol was only 4-5 times slower

than Monte Carlo simulations in vacuum, which is typical of the efficiency of

molecular dynamics simulation of proteins in a GBSA forcefield. In addition to

delivering a methodology for rapid binding free energy calculations, it is expected

that the method will be useful for conducting Monte Carlo simulations of protein

folding. The results of this study were published under the title “Efficient gen-

eralized Born models for Monte Carlo simulations”, in the Journal of Chemical

Theory and Computation.183

In chapters 4 and 5, the methodology developed in the two previous chapters

was applied to two protein-ligand systems. The two systems differed widely in

the features of their binding site and the nature of the protein-ligand interactions.

Cyclooxygenase-2 has a buried, hydrophobic binding site while neuraminidase has

a polar, solvent exposed binding site, with crystallographic waters mediating in-

teractions between the ligand and the protein. In the former case, the ability of a

Generalised Born methodology to treat desolvation of a ligand and the binding site
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was assessed. In the later case, it was unclear if an implicit treatment of water could

yield meaningful results in such a polar, solvent exposed system. The implicit sol-

vent methodology was found to give predictions of high quality, both qualitatively

and quantitatively. Small errors due to the improper treatment of ligand desolva-

tion were observed in the case of COX-2. However, these could be easily corrected

by a simple protocol, where small pockets of high dielectric present in the bind-

ing site were filled with non interacting spheres. While crude, this protocol made

the implicit solvent simulations as accurate as the explicit solvent simulations. Be-

cause this approach amounts to a better calculation of the atomic Born radii, the

protocol could be improved by implementing more elaborate Born radii calcula-

tions available in the literature.140

When applied to neuraminidase, the implicit solvent protocol was found to

yield superior predictions as compared to the explicit solvent protocol. It was

found that the ligands would experience dramatically different interactions with

the protein when alternative theories of solvation were employed. As a result, dif-

ferent relative binding free energies were obtained. The impact of protein flexibil-

ity on the calculated relative binding free energies was investigated. It was found

that while the neglect of the protein internal degrees of freedom gave poorer quan-

titative agreement, the qualitative ranking of the inhibitors in both series was es-

sentially unchanged. The convergence of the predictions with each protocol was

examined and it was concluded, retrospectively, that high quality predictions could

have been obtained in 1 to 2 hours with the implicit solvent protocol and neglect

of protein flexibility, 5-7 hours with the implicit solvent protocols and about 10

hours with the explicit solvent simulations, provided sufficient CPUs are available

to run calculations on the whole series simultaneously. In both cases, with the pro-

tocols employed in this work, this would amount to 130-150 CPUs. This figure is

not unreasonably large. Through advances in distributed computing technologies

it is likely that such a number of CPUs could be obtained at a reasonable cost. At

the time of writing, the cluster of the University of Southampton has 900 available

CPUs.

It would be unwise to formulate definitive conclusions from results obtained

on only two different protein ligand systems, but in the hands of the author the
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implicit solvent methodology has proven a robust and efficient alternative to the

more established protocols that make use of explicit solvation. Further work could

focus on more elaborate implicit treatments of solvation, but given the good per-

formance of the present implicit models, it might be better to extend the testing to

a larger set of protein-ligand complexes and concentrate on better methodologies

only if problematic systems are encountered.

The bulk of this thesis has focused on the introduction of efficient implicit

solvent models so as to calculate rapidly relative binding free energies of pro-

tein ligand complexes. At the end of chapters 4 and 5 it was concluded that high

quality predictions could be obtained in a few hours of simulation, with reason-

able computational requirements1. Thus arguments against the adoption of free

energy calculations in the pharmaceutical industries should not be targeted at their

high computational cost. A major problem associated with this technology is that

relative binding free energies are usually calculated between structurally similar

ligands. As a result, free energy studies are often performed on a congeneric series

of compounds. This is partly because the master equations that govern the calcu-

lation of free energy differences converges more readily when applied to similar

systems, but also because of the difficulty of devising schemes to inter-convert two

structurally unrelated ligands into each other. In chapter 6, alternative methods to

convert one ligand into another were explored. In the single topology method, the

internal degrees of freedom and force field parameters of one ligand are gradually

modified to match the geometric and parametric values of the other ligand. This

make it difficult to transform one ligand into a structurally unrelated ligand. In

the dual topology method, the two ligands are simulated simultaneously and their

interaction energy with the surrounding environment is scaled such that at either

ends of the simulation, only one ligand is present in the surrounding environment,

while the other is in a ideal thermodynamic state. Because this method does not

attempt to modify the internal degrees of freedom of one ligand to match those of

the other, it is more generally applicable. Numerical instabilities are encountered

in the simulation of the end states, but these can be overcome through the introduc-

1the dramatic improvements over the past decade appear more linked to the increase in available
computing resources than to fundamental advances in the theories of free energy calculation...
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tion of a softening of the intermolecular energy terms. In addition constraints that

prevent the ligand being decoupled from drifting out of the binding site have to be

employed. The author stresses that most dual topology simulations published in

the literature are actually hybrid single/dual topology, where a portion of the lig-

and is common to both molecules. Such methods suffer from the same difficulties

encountered in the single topology approach (complex system setup), and cannot

be applied if the two ligands do not share common structural features. By contrast,

the approach developed here is completely general.

This method was initially applied to the calculation of the relative solvation

free energy of ethane, methanol and benzene. After demonstrating that equivalent

answers could be obtained with either approach, the method was applied to the

calculation of the relative binding free energy of a set of COX-2 inhibitors. Two

were congeneric inhibitors and two others were structurally different. In the later

case, protein side chain flexibility had a dramatic impact on the calculated rela-

tive binding free energies. Thus, the good predictions observed in chapter 4 and 5

for models with no protein flexibility is presumably due to the fact that only con-

generic inhibitors were considered. Amore general binding free energy calculation

protocol will almost certainly have to address protein flexibility.

The generality of the dual topology method comes with a price. Relative bind-

ing free energies were found to converge more slowly than with the single topol-

ogy method. However, as demonstrated in the previous sections, computational

expense should no longer be considered the primary issue associated with free en-

ergy calculations. Future work will consist in the application of the methodology

to the calculation of the relative binding free energy of different scaffolds to a pro-

tein. In the pharmaceutical industry, identification of an appropriate scaffold that

binds to a protein interest (“hit”) is often more difficult than the optimisation of a

micromolar inhibitor (“lead optimisation”). The ability of a free energy method to

identify promising scaffolds from a set of decoys would be a significant advance.

Another interesting application of the methodology would lie in the refinement of

ligand poses obtained by molecular docking. Typical docking programs sometimes

identify different binding mode for one ligand. These binding modes cannot be

discriminated by the crude empirical scoring functions employed by the docking
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algorithms. However, free energy based methods may be successful in identifying

the correct binding mode(s).

Other workers have recently proposed a variety of binding free energy estima-

tion schemes which use QM/MM methods to incorporate polarisation effects in

the calculated binding free energies.184,185 These schemes currently score a single

pose and thus depart from the statistical mechanic route to free energy calculation,

and one way to improve on these studies could be to incorporate configurational

sampling in the QM/MM calculations. The author should like to point out that suf-

ficient sampling has to be performed to obtain precise binding free energies with

a classical forcefield. By increasing the cost of the potential energy evaluation,

there exists the risk of compromising on the amount of sampling carried out. Thus

quantummechanical treatments of ligand binding may not be the best route to high

throughput relative binding free energy calculations.

Another effort currently pursued in the field is the calculation of absolute bind-

ing free energies. This typically requires decoupling of the complete ligand from

the protein and aqueous environment, although distance based PMFs methods have

been proposed.92,186 The ability to predict an absolute binding free energy would

be a significant advance. However, in the context of a structure based drug de-

sign project, free energy methods are more likely to make an impact after some

hits have been identified. Once setup, biological assays can be performed rela-

tively rapidly and it is thus likely that a molecular modeller would have access

to a ligand structure and binding affinity before starting a free energy calculation

project. Thus, absolute binding free energy predictions might not be the best way

to advance applications of free energy calculations in drug design.

Before the advent of routine relative binding free energy calculations, a number

of other issues that have not been considered in this work will also have to be ad-

dressed. First, the accuracy of biomolecular force fields may have to be improved.

It is now becoming typical to parameterise force fields against free energies of

solvation of small molecules. Perhaps in the future, such parameterisation could

be extended to include relative binding free energies, in balanced protein-ligand

datasets.
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Second, there is a need to develop Monte Carlo moves that allow for large scale

modifications of the simulated system. RETI is one example of such method as it

allows possibly widely different configurations to be exchanged between simula-

tions. However, the availability of Monte Carlo moves that focus sampling where

it is needed, for example a particular protein side chain, known to adopt different

conformers depending on the nature of the ligand complexed into the binding site,

would go some way towards extending the reliability of free energy calculations.

Third, the ligand setup has to be fully automated. Modern force fields provide

large libraries of torsional angle potentials and rely on quantum mechanical meth-

ods to obtain atomic partial charges. The main obstacle to automated ligand setup

might lie in the automatic generation of a suitable zmatrix. However, this is simply

a technical difficulty that can be solved with sufficient programming skill.

Fourth, the protein setup has to be fully automated. The assignment of the pro-

tonation state of acidic residues can prove difficult without any a priori knowledge

of the local pkA of these residues. Yet they can have a significant impact on the

calculated relative binding free energies by modifying the electric field surround-

ing the ligand. Molecular dynamic simulations at a constant pH represent one step

toward the resolution of this problem by recognising that the protonation state of

acidic residues is conformation dependent.187–189 In addition, a more elaborate

treatment of long range electrostatics would be desirable. The adoption of an ef-

ficient Ewald sum based method in Monte Carlo simulations would go some way

towards the resolution of this problem.

Lastly, free energy calculation protocols (number of windows, extent of sam-

pling..) are often decided arbitrarily or after exploratory work. In a high through-

put context, this would not be practical and it would be useful to design intelligent

protocols that determine the amount of sampling necessary to obtain converged

results.

In conclusion, the broad aims of this research have been satisfied. The com-

bination of implicit solvation with a rigorous statistical mechanics framework

has been shown to be a competitive alternative to the traditional approach of ex-

plicit solvation. The application of various free energy methodologies to different

protein-ligand systems has shown that the computational expense of a free energy
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calculation should no longer prevent its wider adoption. This research has also at-

tempted to make free energy calculations more generally applicable, although ex-

tensive validation of the proposed methodology has still to be carried out. Finally,

before free energy simulations can be employed routinely as a scoring functions

by the pharmaceutical industry, a number of other issues will have to be addressed.



Appendix A

Solving the integrals of chemical

problems

“Chemistry is a trade for people without enough imagination to be

physicists.”

Arthur C. Clarke.

Systems that are of interest to chemists are usually modelled by hundreds or

thousands of atoms and the integrals in equation 1.8 are very complex and multi

dimensional. Their evaluation requires the use of numerical methods that will be

described in this section.

A.1 The curse of dimensionality

Suppose we wish to evaluate the volume V of the unit sphere S in a space of

dimension k. By unit sphere we mean that a point X of coordinates (x1, ...,xk)

from Rk belongs to the sphere S if the relation A.1 is true.

k

∑
i=1

x2i ≤ 1 (A.1)

This problem can be represented by the integral

V =
Z

S
dx1...dxk (A.2)
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which solves to

V =
πk/2

Γ( k
2
+1)

(A.3)

where Γ is the gamma function.

Assume we wish to solve this integral using a numerical approach. We can

reformulate the problem and seek to calculate the ratio of the volume of the unit

sphere to its bounding rectangle. Mathematically this means solving equation A.4.

I =
V

VR
=

R

[−1,1]k IS(x1, ...,xk)dx1...dxk
R

[−1,1]k dx1...dxk
(A.4)

Where IS(X) is 1 if X belongs to S and 0 otherwise. The analogy with equation

1.8 should be obvious. To evaluate A.4 we could use standard quadrature tech-

niques such as the trapezium rule or Simpson’s rule. All these methods involves

the uniform spreading of points over [−1,1]k and averaging of the integrand over

these points. If we decide to do so, and spread m points on each of the k di-

mensions, we require the evaluation of mk points. The exponential increase in the

number of points required to perform the quadrature means that the evaluation of

multi-dimensional integrals is not practical using this approach ( even with only

10 points per dimension, one has to perform 10 billion evaluations for a problem

in 10 dimensions ).

An alternative approach to tackle this problem is to use aMonte Carlo method.190

Instead of uniformly spreading mk points, N points are randomly and uniformly

distributed over [−1,1]k. The integrand is then estimated by the average of the N

points.

Iest =
1

N

N

∑
i=1

IS(Xi) (A.5)

The law of large numbers guarantees that in the limit of an infinity of points

the estimated integrand converge to the exact result. The central limit theorem also

shows that the standard error associated with the estimated integrand Iest is of the

order of N−1/2.190 Of great practical interest is that the number of points N used
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is now under control. Thus one can always decide to draw more samples to reduce

the error until it is satisfactory. Crucially, the error is independent of the dimension

of the integral. The quadrature techniques discussed in the previous section usually

gives a better approximate with less points than Monte Carlo techniques for low

values of k, but as the dimension k increases they are eventually outperformed by

the Monte Carlo approach. Thus at first sight it appears that Monte Carlo methods

do not suffer from the ’curse of dimensionality’.

Since the volume of the rectangle [−1,1]k is 2k, we can write

V

VR
=

πk/2

Γ( k
2
+1)2k

(A.6)

Table A.1 shows the value of the ratioV/VR as a function of the dimension k. It

is clear that the volume of the unit sphere S in proportion to the rectangle becomes

extremely small as the dimension k increases.

Table A.1: Value of V/VR as a
function of the dimension k

k Proportion

1 1.00×100

2 7.85×10−1

3 5.24×10−1

5 1.64×10−1

10 2.49×10−3

50 1.54×10−27

100 1.87×10−69

This has severe implications for the Monte Carlo approach. For high dimen-

sions, because the random points are distributed uniformly, the integrand IS is 0

for most of the samples. In fact, for k=50, even after a few million samples, it is

very likely that the estimated integrand will still be 0. While it is true that 0 is not a

bad estimate of I for high dimensions, this is not much comfort if we are interested

in properties that depends on the exact volume of the sphere. It is clear that even

though the Monte Carlo does not suffer from the curse of dimensionality, its appli-

cation to multi-dimensional integral can be unsuccessful. That only a tiny fraction
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of the volume of phase space has a non zero integrand is a common occurence

when dealing with the integrals of statistical mechanics. In order to have a chance,

we need to introduce methods that take into account the shape of the integrand.

A.2 Importance Sampling

The simple Monte Carlo approach introduced in the previous section fails to pro-

vide an accurate estimate of the integrand of equation A.4 when dealing with a

large dimension k because the probability that a random point X selected uni-

formly from [−1,1]k belongs to the sphere S is extremely small. The solution is

to select random points X from a non uniform distribution π(X) suitably chosen

to favour the selection of points in the region where the integrand I(X) is signifi-

cant. The bias introduced by the non uniform selection of points is then corrected

according to the following equation

Iest =
1

N

N

∑
i=1 f romπ

I(Xi)

π(Xi)
(A.7)

It is clear that equation A.5 is a particular case of equation A.7 where π is the

uniform distribution. The choice of a good distribution function π depends obvi-

ously on the function I. The ratio I(X)/π(X) should be approximately constant

over the range of integration. This is because regions that have a large integrand

I(X) should have a large weight π(X) so that many samples are drawn from this

region, while regions with a small integrand should be sampled infrequently. In

addition it should be easy to draw elements from the distribution π.

Consider the following example. We wish to estimate the quantity I

f (x) = 3x2

I =
Z 1

0

f (x)

π(x)
π(x)dx

(A.8)

using Monte Carlo integration and the following importance distributions
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π0 = 1

π1 = 2x

π2 = 3x2

π3 = 4x3

(A.9)

Note that according to our criterion, π2 is the best importance sampler, since

the ratio π2(x)/ f (x) is constant, but this is because π2(x) = f (x).

In general, in order to draw a random number in the interval [a,b] according to

a distribution g(x), the following method can be used.190

1. evaluate G(x) =
R b
a g(x)dx

2. solve u = G(x) to obtain x = G−1(u)

So we just have to generate a uniform random number u between [a,b] and then

apply x = G−1(u) to generate samples from the given distribution g(x).

Table A.2 shows the average estimated integrand and the standard deviation

after 10 simulations of N=100 samples with each importance sampler.

Table A.2: Estimates of I from
eq A.8 by importance sampling

Function Average Deviation

π0 1.027 0.111

π1 0.986 0.031

π2 1.000 0.000

π3 0.999 0.036

It is manifest that π0 performs worse than the other importance samplers. Ap-

plication of π2 yields systematically the correct answer for any selected point. Note

however, that in order to draw samples from π2 on [0,1] we had to solve
R 1
0 π2(x)dx

which is precisely the integral we are trying to estimate. In general, the smallest

variance can be obtained by selecting π(x) = c× f (x).190 On a realistic applica-

tion, the shape of the integrand can be quite complex and finding a very efficient
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function π from which samples can be drawn easily can be as difficult as solving

the integral of interest.

If we study equation 1.8 we see that an appropriate distribution function would

be π(x) = exp(−βU(x))/ZN,NVT which is in fact the Boltzmann distribution. If the

product A(x)exp(−βU(x))/ZN,NVT is not dominated by A, then such importance

distribution is likely to provide a good estimate of 1.8 with a reasonable number of

samples. Unfortunately we can not manipulate directly the Boltzmann distribution

because the knowledge of the normalisation factor ZN,NVT would requires us to

enumerate all the states the system of interest can adopt.

A.3 Markov Chains

In the previous section we have shown that standard Monte Carlo integration can

be markedly improved when samples are drawn from a distribution π which has

been selected such that it increases the likelihood of picking samples in the region

where the integrand of the function of interest is high. In statistical mechanics,

the integrals we are dealing with are very large (several hundreds of dimensions)

and have a very complex shape, with several separated regions contributing to the

integrand. Finding a priori a suitable weighting function π is almost as difficult

as solving the integral. The purpose of this section is to show how this can be

accomplished.

A.3.1 Definition

A stochastic process is a procedure which entails the generation of a number of

states according to probabilistic rules. A Markov process is a form of stochastic

process where the probability of generating a new state is dependent only on the

state the process is currently in. The sequence of states that is generated by re-

peated applications of a given Markov process forms a Markov chain and the act

of generating a new state in the Markov chain is called a trial.191 AMarkov process

can be represented by a matrix. Equation A.10 models a 3 states Markov process

Π where pi j is the probability to make a transition from state i to state j and pni j is

the probability to make this transition in exactly n steps.
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Π =







p11 p12 p13

p21 p22 p23

p31 p32 p33






(A.10)

Because the elements of the matrixΠ are probabilities, each element πi j should

be a non negative number and the sum of each row should be equal to 1. Because

we are interested in properties of a special class of Markov chains we need our

Makov chain specified by Π to obey these other properties :191

1. The Markov Chain must be positive recurrent. A state y is recurrent if the

probability of, starting in y, and eventually returning to y, is equal to 1. Oth-

erwise y is said to be transient. If the Markov chain can returns to the state

y in a finite number of steps, the state is said to be positive recurrent. An

alternative way to see the difference between a transient state and a recur-

rent state is that recurrent states are infinitely visited while transient states

are only visited a finite number of times in the limit of an infinite number of

trials. The Markov chain is positive recurrent if all of its states are positive

recurrent.

2. The Markov Chain must be irreducible. This means that the probability of

connecting any two states x,y after a number of trials n is non zero.

3. The Markov Chain must be aperiodic. The chain must not cycle through a

finite number of sets of states.

If a state y is positive recurrent and aperiodic, it is ergodic and if all the states

of the chain fulfill this condition, the Markov chain is said to be ergodic. If the

Markov chain is ergodic, then the following equation is true :

π j = limn→∞p
(n)
i j ∀ i (A.11)

Equation A.11 states that repeated applications of an ergodic Markov process

converges towards a single probability for state j that is independent of the initial

state i. The vector π = (π j) is called the limiting distribution of the chain. Equation

A.11 can also be formulated as
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π = limn→∞ ρ(1)Π(n) (A.12)

where ρ(1) is any arbitraty initial distribution and Π(n) is the n-th application

of Π . Πn can be calculated through the following relations (noting Π = Π(1)).

Π(n) = ρ(1)
n

∏
i=1

Π(i)

= ρ(n−1)Π

(A.13)

Equation A.12 shows that the limiting distribution π is an eigenvector of the

transition matrix Π with eigenvalue 1.

The ergodic theorem shows that states Xi drawn from Π obey the following

relationship.

limn→∞
1

n

n

∑
i=1

f (Xi) =
Z

Rk

f (x)π(x)dx (A.14)

This theorem is very important becauses it says that if we have specified a

transition matrix such that it has one (and only one) limiting distribution π, then

in the limit of a large number of samples we are drawing from the distribution

π without the need of specifying π a priori. Thus Markov chains are a powerful

method to sample from complex distribution function π. Returning to equation 1.8,

we now see that our problem is to formulate a Markov Chain such that its limiting

distribution is the Boltzmann distribution.

A.3.2 Detailed Balance

A Markov Chain obeys the principle of microscopic reversibility or detailed bal-

ance if for every pair of states i,j we have the following equality :

πipi j = π jp ji (A.15)

where πi is the probability of state i in the limiting distribution π and pi j is the

transition probability from the matrix Π. It is simple to show that if the Markov

Chain obeys detailed balance, then π must satisfy the eigenvalue equation πΠ = π.
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∑
i

πipi j = π j

∑
i

π jp ji = π j

π j∑
i

p ji = π j

π j = π j

(A.16)

The first line is the property of an eigenvector, the second line introduces de-

tailed balance, and the summation is unity on the third line because the rows of the

matrix Π sum to one.

The utility of detailed balance is that it provides an easy way to modify the ele-

ments pi j of a transition matrix Π such that repeated applications of Π leads to the

limiting distribution of interest π. It is important to remember however that many

transition matrices Π who do not obey detailed balance have a limiting distribu-

tion π, thus the use of detailed balance in the construction of a transition matrix is

merely a convenience.

A.3.3 Performance of a Markov chain

While equation A.14 tell us that a suitably chosen transition matrix Π converges a

Markov Chain towards a unique limiting distribution π it does not say how quickly

the chain converges. Knowing this information is useful because in any simulation,

the number of samples n is necessarily finite and in this situation it is useful to

discard the data collected during the first k iterations because they were preleved

when the Markov Chain was not well converged and have an adverse effect on the

remaining statistics.

Consider the ergodic transition matrix Π and the eigenvalue problem

µΠ = λµ (A.17)

The Perron-Frobenius theorem states that Π has one dominant eigenvalue λd

which is positive and all the elements of its associated eigenvector µd are non

negative. Furthermore, if the rows of the matrix Π sums to unity, which is the case
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for a stochastic matrix, then λd = 1. µd is also proven to be the only non negative

eigenvector ( µd(i)≥ 0 ∀i ) and clearly, only this eigenvector can be interpreted as

a probability distribution π. By virtue of the Perron-Frobenius theorem, it is also

shown that every other eigenvalue λo must be of magnitude lower than unity.
192 Π

is a square matrix and can be diagonalised.

Π = PDP−1 (A.18)

And we have

Π(n) = (PDP−1)...(PDP−1)

= PD(n)P−1
(A.19)

D has only his diagonal elements non null and they are equal to the eigenvalues.

Since λd = 1 and any other λo ≤ 1, and because the diagonal elements of D(n) are

simply λn then, assuming that the eigenvalue have been ordered by magnitude it

comes that

D
(n)
n→∞ =













1 0 ... 0

0 0 ... 0

... ... ... ...

0 ... ... 0













(A.20)

The other eigenvalues λ0 must vanish to 0 for a large number of trials. The

property of A.20 gives a mean to rate the performance of a a transition matrix.

Suppose that we have determined a set of transition matrices Πk,k = (0, ..,m) that

converges towards the same limiting distribution π. Each matrix is diagonalised

and the diagonalised matrices whose non dominant eigenvalues have the smallest

magnitude will converge more quickly toward A.20.

A.3.4 The Metropolis Monte Carlo algorithm

We restate the procedure that implements the Metropolis Monte Carlo method.

1. Start in state i
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2. Attempt a move to state j with probability pi j

3. Accept this move with probability αi j = min(1,χ) where χ = (π j/πi)

4. If the move is accepted set i = j, otherwise i = i

5. Accumulate any property of interest A(i)

6. Return to 1 or terminate after a number of iterations

Let Qi j be the probability that the move i to j is accepted and assume π j < πi.

πiQi j = π jQ ji

πipi jαi j = π jp jiα ji

πipi j
π j

πi
= π jp ji

pi j = p ji

(A.21)

And we see that detailed balance is respected if the unmodified transition ma-

trix is symmetric i.e, the probability of moving from i to j, prior weighting by πi

and π j is the same as the probability of moving from j to i.

A.4 The connection with molecular simulations

When running a simulation of a chemical system of interest, it is easy to forget

that we are estimating an integral with the aid of Markov chains and Monte Carlo

importance sampling. This is because, unlike the the examples discussed previ-

ously, the number of states the system can occupy is embarrassingly huge and the

transition matrix Π that specify our Markov process is so large that no computer

will ever be able to form this matrix (this unfortunately prevents the straigthfor-

ward application of the linear algebra techniques discussed in the previous section

to assess the ability of this matrix to approximate the distribution π in the smallest

amount of steps). When using the Metropolis algorithm, we are randomly select-

ing a trial state j given a state i and this means that we are interested in only one

row of Π at a time. Furthermore, because a move is proposed solely on the basis of
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the transition probabilities pi j, the acceptance probability χ needs to be evaluated

only for the pair of states (i,j) and the calculation of π j/π j can be performed ”on

the fly”.

It is useful to reflect on the way the attempted Monte Carlo moves underlies the

transition matrix. Consider, for simplicity the random displacement of a molecule

in state i by a maximum amount of dr in a cubic box of side a. There is a finite

number of states j in the sphere of volume 4π/dr3 that can be reached from state

i using this move. This number is smaller than the total number of states. Ma-

trix A.22 highlights that for only a fraction of the number of states, there exist a

probability of trying a transition for which pi j is positive.

Π =

















... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

0 pi j pii pik 0 0 0 0 0

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... pnn ...

















(A.22)

Suppose the transition i to j is accepted, the same situation would apply for

state j at the next iteration and it might take several iterations before we can reach

state n if it is sufficiently far. The situation can be complicated by the acceptance

test. Suppose state i and n have a significant weight in the distribution π. It is

desirable that these states are present in the generated Marvov chain. If states i

and n can not be connected in a single step, and that the sequence of states (j,k)

that can connect them is such that the ratio πk/π j is close to zero, then the overall

probability of traveling from i to n is very low and by consequent, the convergence

of the Markov chain will be very slow. Even though there is a finite probability

of making this transition (otherwise the chain would not be ergodic and yield a

limiting distribution), the chance of this happening can be so low that the number

of samples to draw before the transition occurs can be astronomically large. In the

language of chemistry, we say that states i and n are separated by an energy barrier

and we picture the probability that a ball has enough kinetic energy to overcome

this barrier. In this case, the simulation may appear to converge toward a limiting

distribution ρ different from the desired distribution π and any property evaluated
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will be wrong. Even worse is the fact that there are no rigorous mathematical way

to detect whether or not this problem has occured. In this situation the chemist

intuition can be invaluable in detecting pathological cases. In chemical problems

the potential energy function U is usually sufficiently complex that there exist

several regions of low energy separated by high energy barriers and, assuming

neighbouring states in phase space have neighbouring index, the vector πNVT is

characterized by short sequences of high probability separated by long sequences

of low probability. We see then that the convergence of the Markov chain can be

greatly improved if we design ’intelligent’ moves such that transitions between

regions of high probability are attempted.
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