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Abstract 

In the framework of the 2015 D3R inaugural grand challenge, blind binding pose and 

affinity predictions were performed for a set of 180 ligands of the Heat Shock Protein 

HSP 90- protein, a relevant cancer target. Spectral clustering was used to rapidly 

identify alternative binding site conformations in publicly available crystallographic 

HSP90-alpha structures.  Subsequently, multiple docking and scoring protocols 

employing the software Autodock Vina and rDock were applied to predict binding 

modes and rank order ligands. Alchemical free energy calculations were performed with 

the software FESetup and Sire/OpenMM to predict binding affinities for three 

congeneric series subsets. Some of the protocols used here were ranked among the top 

submissions according to most of the evaluation metrics. Docking performance was 

excellent, but the scoring results were disappointing. A critical assessment of the results 

is reported, as well as suggestions for future similar competitions. 
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1. Introduction  

Since the advent of computer-aided drug design (CADD) in the early 1980s a major 

goal of the field has been the quantitative prediction of protein-ligand interactions. 

Though CADD is now a major technique deeply entrenched in drug discovery [1–9], 

molecular modelling protocols that reliably and quantitatively predict precise 

biophysical measurements remain sought after. Obstacles are well understood and 

include limits in the accuracy of potential energy functions [10–13], and accounting of 

possible conformational changes in protein and ligands upon complexation [14–19]. 

While numerous methodologies have been proposed to address these challenges, initial 

evaluation typically relies on retrospective analysis of their performance. Though such 

practice is necessary to initiate methodological work, it is insufficient to validate 

techniques for application to drug discovery. The chief objection is that it is difficult to 

guarantee removal of biases in the selection of optimal and transferable protocol 

parameters. A more realistic assessment of the performance of molecular modelling 

protocols should include true predictions that are subsequently corroborated by follow-

up experimental measurements. Yet a major difficulty that stands in the way of this 

scenario is that most academic labs that contribute innovative CADD methodologies are 

ill-equipped to follow-up predictions with adequate experimental measurements. To 

address this obstacle, the 2015 D3R’s (Drug Design Data Resource) inaugural grand 

challenge was setup by a consortium of academics and pharmaceutical companies to 

assess the state of the art of molecular modelling protocols with blinded predictions of 

binding poses and binding affinities of drug-like small molecules on previously 

undisclosed relevant datasets contributed by the pharmaceutical industry. 

Structured as a two-stage contest, the first D3R grand challenge aimed to put different 

computational approaches to the test to predict binding modes and binding affinities. 

This report is concerned with the competition that focussed on the Heat shock protein 

HSP 90-alpha (HSP90-α) dataset. Participants were provided with a library of structures 

of putative ligands for the ATP binding site of this cancer target [20–22]. The objective 

of the first stage of the competition was to perform a blinded pose prediction on a small 

subset of six compounds of this library, and an affinity-based rank ordering for the full 

library. Participants were also given the opportunity to submit binding affinity 

predictions for subsets of this dataset. This report contrasts the performance of several 

protocols used by our group for docking and scoring this dataset and concludes with 
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suggestions for future similar competitions. All datasets discussed are available for 

download from the webpage of the Drug Design Data Resource consortium [23]. The 

supplementary information gives details on how to compare the presented work here to 

other competitors results.  

2. Theory and Methods 

2.1 Datasets 

The ligand library provided by the organizers consisted of 180 ligands based on 

different scaffolds, all provided as SMILES strings. Subsets of the 180 ligands were 

defined by the organizers as set1, 2 and 3 containing five benzophenone derivatives, 

four amino pyrimidine derivatives and ten molecules built from benzimidazolone 

scaffolds respectively. A 2D structure of each of the subsets can be found in figure SI1. 

For HSP90-α four crystal structures were provided (PDBID: 2JCC, 2XDX, 4YKR and 

4YKY), capturing two conformations of the ATP binding site of HSP90-α, although 

participants were encouraged to further evaluate the receptors conformational 

variability.  

Once the challenge was concluded the experimental affinity data was released by the 

organizers, consisting of IC50 data obtained using a FRET based assay as described by 

Huth et al. [24]. To compare computational prediction with experimental results the 

binding free energy of a ligand L2 relative to a ligand L1 was calculated with equation 

1: 

𝛥𝛥𝐺𝑳𝟏→𝑳𝟐 =𝑘𝐵Tln
IC50𝐿2

IC50𝐿1
  ,       (1) 

where kB is the Boltzmann constant, and T the temperature. 

2.2 Selection of protein structures for docking and scoring 

Initial analysis of available X-ray diffracted crystal structures of HSP90-α indicated that 

significant ligand-induced conformational changes in the ATP binding site were 

possible [25,26]. Given the relatively short period available for contestants to submit 

predictions it was deemed unpractical to initiate binding site conformational dynamics 

studies via enhanced sampling methods such as accelerated Molecular Dynamics 

[27,28] (aMD) or Metadynamics [29]. Yet the literature evidence was sufficient to 

suggest that simplistic treatments of protein flexibility for this binding site  (i.e: 

considering pre-computed rotamer libraries for flexible sidechains [30], using reduced 
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van der Waals radii on the receptor atoms [31,32], or the refinement of docking poses 

by means of Molecular Dynamics (MD) simulations [33,34]) would  fail to capture 

potential significant conformational rearrangements. The alternative pursued here was 

to analyse collections of previously solved X-ray structures to construct a representative 

ensemble of binding site conformations suitable for docking calculations [26].  

Given the large number of available HSP90- structures in public databases an 

algorithm was needed to classify structures by representative patterns. This was carried 

out with a spectral clustering method [35,36]. Specifically, 195 HSP90-α crystal 

structures from the PDB were identified with a resolution of at least 2 Å. A root mean 

square deviation (RMSD) matrix M between these 195 structures based on C-α atoms 

was then computed, see figure 1. The RMSD matrix then served as a distance matrix for 

spectral clustering. The idea behind spectral clustering is to achieve a dimensionality 

reduction of a large dataset and grouping (clustering) of similar structures in the 

process. The goal here was to find representative structures from the resulting clusters 

that would then be used for docking calculations. The RMSD matrix was used to 

formulate a Gaussian diffusion kernel which gives an artificial diffusion distance 

between the different crystal structures. The diffusion probability between two crystal 

structures is given by: 

𝑲𝒊𝒋 = 𝐞𝐱𝐩 (−
|𝑴𝒊𝒋

𝟐 |

𝟐𝜺
),         (2) 

where 𝑀𝑖𝑗  are the entries of the RMSD matrix, ε is a cutoff, and K is a matrix holding 

information about the diffusion probabilities. The cutoff ε was chosen to be 0.25 Å
2
. K 

can be normalized such that it is a stochastic matrix T, whose eigenvalues are the 

objects of interest for the spectral clustering. The dominant eigenvalues of T indicate 

how many clusters the dataset contains. Subsequently the so called Perron Cluster 

Cluster Analysis (PCCA+) algorithm [37], which uses information in the eigenvector 

structure to assign invariant clusters, was used to assign each of the crystal structure to 

one of the clusters. The eigenvalues of the stochastic matrix T and the PCCA+ clusters, 

were computed using the software package pyEMMA [38].  

2.3 Docking 

Docking protocols 
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PDB structures retained for further analyses were prepared for docking calculations.  

Addition of hydrogen atoms and removal of co-crystallized ligands was conducted 

using the software fconv [39]. Protonation states for titratable residues in the receptor 

were assigned using PROPKA [40,41] at a pH value of 7, while the pKA calculator 

plugin from Marvin 15.3.30.0 was used to determine the most abundant species of 

ligands at pH 7.  

Two different docking methodologies were employed. The first protocol, denoted 

‘unbiased’, was carried out using the software Autodock Vina. A cube of 20 Å of side 

was centred on Asp 93 to define the docking search space, the exhaustiveness level was 

set up at 50 and default options were used for the remaining parameters. AutodockTools 

was used to prepare the ligands and to assign Gasteiger charges [42]. The second 

protocol, denoted ‘guided’, was carried out with the software rDock [32]. In this case, 

the ‘guided’ protocol was similar to that reported by Barril and co-workers [43]. In 

brief, a hydrogen bond donor and hydrogen bond acceptor groups from the ligand were 

set to a distance of 4.0±0.75 Å from Cγ of Asp 93, which was also the centre of a sphere 

of radius 24 Å that enclosed the docking cavity. Each compound was subjected to 100 

iterations of the genetic algorithm using default scoring parameters.  

Additionally, water molecules are known to play a key role in the stabilization of 

ligands in the HSP90-α binding site [43], therefore two interstitial water molecules that 

interact with the side chain of Asp 93 were retained in both the ‘unbiased’ and the 

‘guided’ docking protocols. 

Ranking protocols 

Docking protocols employed for the pose prediction were also used for ranking of the 

whole dataset. For clarity protocols are named according to the docking program used 

(v for Autodock Vina, rd for rDock), and the PDB ID of the HSP90-α structure used for 

the dockings (4w7t, 4l94, 4cwf, 2fwz, 2ccu). This yielded 10 different ranking for the 

ligands dataset. In addition two further protocols were defined as rd/v-average(avg) and 

rd/v-best. rd/v-avg is obtained by taking the average score of the top-ranked pose from 

all five receptor structures for each of the 180 compounds. rd/v-best is obtained by 

taking the results from the best scoring structure for each of the 180 compounds. Some 

compounds were unable to satisfy the imposed restraints, and these were arbitrarily 

assigned a score of 0.0 kcal/mol. 
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2.4 Alchemical free energy simulations 

Theoretical background  

Relative alchemical free energy have shown to be a useful tool for the computational 

prediction of binding affinities in the past [11,44–50]. In this methodology, the relative 

free energy of binding for two ligands to the same receptor can be described by a 

thermodynamic cycle. Rather than using molecular dynamics (MD) simulations to 

compute binding trajectories directly for the two different ligands, an alchemical 

transformation, ‘morphing’ L1 to L2 is carried out. The relative free energy of binding 

between two ligands is then given by: 

𝛥𝛥𝐺𝑏𝑖𝑛𝑑(𝐿1, 𝐿2) =  𝛥𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑒𝑑(𝐿1, 𝐿2) − 𝛥𝐺𝑏𝑜𝑢𝑛𝑑(𝑃𝐿1, 𝑃𝐿2). (3) 

This means that in order to compute 𝛥𝛥𝐺𝑏𝑖𝑛𝑑(𝐿1, 𝐿2) two independent sets of 

simulations have to be carried out. One simulation for L1 solvated in water and one 

simulation for L1 bound to the protein. In both sets of simulations L1 is transformed to 

L2 over a set of λ ∈ [0,1] windows, where λ=0 corresponds to L1 and λ =1 

corresponds to L2, either in just solvent or solvated and complex. Any intermediate λ

value corresponds to a simulation with a linear interpolation between L1 and L2 in the 

force field. In this work a single topology alchemical perturbation protocol was 

employed, using 17 evenly spaced λ-windows. The MBAR estimator as implemented 

in pymbar was used to recover Δ𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑒𝑑  and  𝛥𝐺𝑏𝑜𝑢𝑛𝑑 values from the 17 separate λ 

simulations [51]. All simulations were carried out with the Sire/OpenMM (SOMD) 

software revision 2015.0.0. [52].   

Alchemical free energy molecular dynamics simulation setup 

The relative free energy setup and simulation protocol from the predicted docking poses 

is laid out in the following. Aside from the set 1, 2, and 3 compounds a small test 

dataset was initially simulated to validate the proposed simulation protocol for the 

challenge. The compounds of the test dataset were taken from Bruncko et al. [53]. The 

simulation setup pipeline was identical in all cases although a different representative 

structure of the receptor was used for each set. PDB structures 2YK2 [54] and 4L90 

were used for sets 1 and 3 respectively based on trial docking calculations, whereas 

PDB structures 2XDX [55], and 3OWD [53] were used for the test set and set 2 
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respectively due to the perceived similarity between the co-crystallized and query 

compounds.  

The FESetup [56] software was used to  set up relative free energy calculations  Ligands 

were automatically parameterized using the GAFF force field [57] and assigned AM1-

BCC [58,59] charges. More details for the setup parameters are provided in the SI.  

Alchemical free energy molecular dynamics simulation protocol 

Single-topology alchemical free energy calculations were carried out using the SOMD 

simulation engine with the following protocol. The CUDA OpenMM [60] platform was 

used to execute the simulations on a cluster of GTX980 GPUs. Both the complexes 

consisting of protein and ligand as well as the ligand in water were run in order to be 

able to extract a relative binding free energy from these simulations using eq. 3. Each 

simulation was repeated twice to assess reproducibility of the computed relative binding 

free energies. During all simulations a hydrogen mass repartition [61] scheme was 

employed to allow for an integration time step of 4 fs and each -simulation was run for 

8 ns using a Leap-Frog Verlet algorithm. The initial velocities were drawn randomly 

according to a Maxwell-Boltzmann distribution at 298 K. A mean temperature of 298 K 

was achieved using an Andersen thermostat with a collision frequency of 10 ps
−1

, 

whereas
 
pressure was maintained at 1 atm using a Monte Carlo barostat as implemented 

in OpenMM [62,63] with an update frequency of 25 MD steps. The simulation box was 

treated with periodic boundary conditions and non-bonded interactions were evaluated 

by using a 10 Å  atom-based Barker-Watts reaction field cut off scheme, with the 

medium dielectric constant set to εsolvent = 78.3. Simulation input files are available for 

download, with more information given in the SI.  

Alchemical free energy molecular dynamics simulation analysis 

As a first step in conducting an alchemical free energy calculation, a series of 

perturbations between ligands needs to be defined. An example of such a perturbation 

network is shown in figure 5A and can be interpreted as a directed graph, where the 

directed edges indicate the direction of simulations carried out. Each edge represents 

two sets of calculations; the changing of the ligand in solvent and the changing of the 

ligand bound to the protein. The value along the edge (in kcal/mol) is the computed 

𝛥𝛥𝐺𝑏𝑖𝑛𝑑(𝐿1, 𝐿2), based on the intermediate simulations, from equation 3. In order to 

obtain relative free energies with respect to a given reference compound, e.g. 9e from 
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figure 5A, different approaches can be taken [64] In this study a straight forward path 

averaging was used. Each of the two ‘edge simulations’ was repeated twice and an 

average of both relative binding free energies ∆∆G between the two compounds was 

computed. This resulted in an ‘averaged’ perturbation network as shown in Fig. 5A. 

Relative binding free energies of each individual run were compared before averaging 

in order to make sure that both runs resulted in a similar ∆∆G. The averaged 

perturbation network of relative binding free energies was then analysed using the 

python network package networkX [65]. Two simple checks were carried to test the 

robustness of the network before proceeding. According to Kirchhoff’s law, the sum of 

flow into a node and out of a node must be zero and simple cycles consisting of three 

nodes should therefore be zero. In practice cycles with a cycle closure error less than 0.3 

kcal/mol were considered a sign of robust convergence. Since the overall goal was to 

compute a relative binding free energy of all compounds with respect to a particular 

target compound, networkX was used to compute all possible simple paths, i.e. non-self 

crossing paths, between a target compound (e.g. node 9e of figure 5A) and an initial 

compound (e.g. 9b of figure 5A). The resulting free energy paths were averaged and 

their standard deviations used for the error analysis. Doing an analysis in this way 

neglects information on the fact that different paths will have different lengths and 

should give different contributions to the overall relative free energy between 9b and 

9e. However, it is unclear based on the assumption that all edges along the path carry a 

certain uncertainty, which may vary depending on each of the edge, what the most 

robust way of estimating relative free energies is. All relative free energies shown in the 

results section have been computed based on the path averages and their standard 

deviations based on the perturbation networks of each dataset.  

Once relative binding free energies have been computed both for the experimental data 

and from the computational perturbation network analysis, their correlation has to be 

assesed. Typical measures for correlation are the Pearson correlation coefficient R and 

Kendall τ as well as the mean unsigned error (MUE) which gives information about the 

quality of the free energy estimate. In order to test the robustness of the estimated R, τ, 

and MUE values an error analysis was undertaken in order to get a lower and upper 

bound for their estimates [46,66] . Each computational relative binding free energy 

estimate has a measured value and an error associated with it. For each computational 
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data point an artificial normal distribution was constructed, with a mean of the free 

energy estimated and the standard deviation given by the error of the estimate. Then for 

each computational data point 1000 random samples were drawn from the constructed 

normal distribution and correlated with the experimental result. This then gives 1000 

data points for R, τ and MUE, which are in turn a distribution from which the mean and 

the standard deviation can be determined and represent the values that are reported in 

the results section.   

 

3. Results and Discussion 

3.1 Receptor structure selection via spectral clustering  

During the first stage of the D3R challenge the objective was to obtain binding modes 

for six compounds, defined by the organizers, belonging to the three different chemical 

families:  two benzimidazol-2-ones (40 and 44) two hydroxibenzophenones (160 and 

175) and two aminopyrimidines (73 and 179). Given the known plasticity of the ATP 

binding site of HSP90-α, it was deemed necessary to dock each compound against 

multiple structures. Searches in the PDB returned 195 crystal structures with resolution 

< 2 Å. Although performing docking calculations on all such structures was feasible, 

this was not judged suitable given short-comings in scoring, and the increased human 

time needed for analysis of the results. Instead spectral clustering using a C-α RMSD 

metric was used to identify groups of highly related structures (see methods). The 

results indicated five dominant eigenvalues; hence the choice of five different binding 

site RMSD families seemed appropriate. After visual inspection, however, the first three 

clusters were unified, since their structural difference were not very large, and both 

cluster 1 and cluster 2 initially only held a small number of crystal structures, all 

stemming from the same crystallographic study [53]. As shown in figure 1, the final 

clustering groups the 195 structures into three large families differing in the 

arrangement of the region encompassed between residues 104 and 111:  The first cluster 

(c1) groups structures where these residues form a loop that occludes the binding site. 

The second cluster (c2) represents a conformation where the same region forms an α-

helix. The remaining cluster (c3) gathers structures where residues 104 to 111 are 

arranged in a configuration that retained features from both α-helix and disordered loop 

and where the ATP binding site is only partially occluded. It is worth noting that, 
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although the clustering procedure was solely based on the analysis of the C-α RMSD 

matrix, and no constraints were imposed regarding the final number of clusters, the 

resulting three clusters agree well with the three major conformational states of HSP90-

α (open, closed and helical) previously reported in the literature [25,26].  

Representative structures for each cluster where then selected after visual inspection. 

Care was taken to represent sidechain rearrangements not captured by the C- RMSD 

metric. Noticeably, only residues LYS58 and ASP54 were identified in two 

significantly different conformations in clusters c1 and c2, but not among structures in 

cluster c3. Consequently, structures ID:2ccu [67] and ID:4l94 [68] were used to 

represent c1, 2fwz [69] and 4cwf [70] to represent c2 and 4w7t [71] was the 

representative structure of c3. Therefore, solely by means of binding site RMSD 

spectral clustering and a slight refinement of the results, it was possible to capture major 

differences in the receptor’s binding site and to represent the whole available 

crystallographic data in a reduced data set. 
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Figure 1. A) Structure of the complex between HSP90- α and ADP (PDB ID: 1byq[72]). 

Regions of highest variability on the active site among HSP90-α crystals are highlighted in 

orange, including residues ASP54 and LYS58. B) RMSD matrix of 195 crystal structures of 

HSP90-α, with entries ordered according to the spectral clusters. The conformational difference 

between the three chosen clusters is highlighted in the top structures in orange.  

3.2 Pose prediction results  

A total of thirteen different predictions were generated using the protocols described in 

the methods section. Each prediction included up to five ranked poses. In addition to the 

protocols used to rank compounds, solely for the pose prediction part of the challenge, 

two protocols involved manual selection of the top 5 poses by visual inspection of the 

top docked poses across all tested structures (denoted –visual hereafter). In this 

protocol, the criteria followed to rank docking poses was based on the shape 

complementarity between each docking pose and the binding site, the chemical 

complementarity between ligand substituents and binding site lining sidechains 

(specially the number of hydrogen bonds established and the distances predicted by the 

docking program) and the overall resemblance of the docking pose with the 

crystallographic binding mode of related compounds. The quality of each prediction 

was evaluated by the D3R organizers using two metrics: the mean RMSD of the top 

ranked pose to the crystal structure, and the mean value of the lowest RMSD among the 

five poses belonging to each compound. A comparison of the performance of individual 

predictions is shown in figure 2. 

In general, among protocols with no a posteriori human driven refinement, protocols 

based on rDock outperform those based on Vina when results are ranked according to 

the RMSD of the top ranked pose: four out of six rDock protocols achieved RMSD 

values below 2.5 Å in this metric, while in the case of Vina protocols all scored above 

3.0 Å. The same trend is observed when results are ranked according to the lowest 

RMSD obtained within the top 5 ranked poses, although differences become less 

evident in this case: all rDock protocols scored below 2.5 Å while four out of six Vina 

protocols were below that threshold. Due to the small number of predictions, which 

does not allow for a significant statistical analysis, these results do not report on the 

quality of any of the codes or scoring functions. Instead, it is assumed that the better 

performance of protocols employing rDock highlights that the use of pharmacophoric 
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restraints enables a more accurate sampling of region of interest of the conformational 

space. Indeed, this explains why reduced differences between rDock and Vina protocols 

are observed when predictions are ranked according to the lowest RMSD of any top 5 

ranked poses. The correct pose is also sampled by the protocols based on Vina but it is 

wrongly ranked. By contrast, the use of pharmacophoric restraints avoids exploring 

solutions away from the region of interest, and allows a more exhaustive exploration of 

the local minima, produced more refined poses that score better. 

 

Figure 2. Bar plot of all different Docking protocols and the mean RMSD of the best submitted 

pose (green) and beast mean RMSD from all submissions (blue).  
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The best overall performance was obtained by the rDock-visual protocol, were a 

prediction was produced after visual inspection of top scored poses across multiple 

structures (unfortunately the equivalent Vina protocol was not ranked by the organizers 

due to a formatting error for our submission. Similar results were expected due to the 

high resemblance of the predicted poses with the rDock-visual and Vina-visual 

protocols). Precisely, the mean RMSD of the first pose for the rDock-visual protocol 

was 1.2 Å (ranking 4th out of 47 submissions in the challenge).  As shown in figure 4 

this protocol yielded predictions with an RMSD below 1.0 Å for four compounds (73, 

164, 40 and 179), slightly above for 175 and only for 44 the RMSD peaked above 3.0 

Å. Even in the case of 44, the main features of the binding mode were retained and the 

high RMSD value is due to a different orientation of the pyridine sulphonamide moiety. 

It is worth emphasing that this human driven protocol outperformed automated docking 

predictions on single structures, as well as automated consensus protocols. 

 

 
Figure 3. Superposition and RMSD performance of the rd-visual protocol prediction of query 

compounds with respect to their revealed crystal structure.  

Scoring of compounds 

Similarly to the evaluation of the pose prediction stage, performance of the different 

scoring protocols was assessed using three different metrics: the area under curve 

(AUC) of a receiver operator curve (ROC), the Pearson correlation coefficient (R value) 

and Kendall τ. The first metric reports on the ability of a protocol to distinguish active 
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(defined as those compounds with an IC50 < 1 μM) from inactive compounds, while 

the other two metrics assess the correlation of the rankings between experimental and 

docking results for the 180 compounds. To assess statistical treatment, the data was 

bootstrapped and for each docking dataset of the 180 ranked compounds, a ‘new’ set of 

180 compounds was drawn at random with replacement from the existing dataset and 

ordered according to their rank obtained from the docking program. Figure 4 

summarises the overall results of the scoring of the 180 ligands using the different 

protocols. From figure 4A it can be deduced, that three of the rDock protocols (rd-best, 

rd-avg, and rd-4w7t) performed significantly better than the other rDock and Autodock 

Vina protocols for the AUC measure. All Autodock Vina protocols perform similarly 

and the best average AUC value obtained is 0.72. The overall correlation between the 

rankings of compounds is rather poor for both the R value and the Kendall τ measure. 

Figure 4B and 4C show that only the rDock protocol rd-4l94 performs significantly 

worse. This poorer performance may be due to the different arrangement of the side 

chains of LYS58 and ASP54 in this crystal structure. In comparison to other 

participants of the challenge, both correlation scores lead to a top 3 position rank. 

However, there is no statistically significant difference with other top scoring protocols, 

largely due to an overall poor correlation. 

Interestingly, nine compounds were excluded from the ‘guided’ docking protocol since 

they could not satisfy the imposed pharmacophoric restraints. Among these, compounds 

51, 122, 180, and 182 were later revealed to be inactive (IC50 >> 1 M); two other (145 

and 165) were found to be ~100 fold less active than the most potent inhibitor in the 

dataset (44, IC50 = 0.005 M). The remaining three compounds 128, 161 and 174 

belong to the top 10% of most potent inhibitors. Therefore, although AUC measure was 

significantly better for the ‘guided’ docking protocols, this family of protocols failed to 

identify three interesting compounds that arguably deviated significantly from other 

scaffolds in the dataset (Figure SI4).  
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Figure 4. Scoring Results. Autodock protocols are shown in blue and rDock protocols in green. 

Mean and 95% confidence intervals are shown. A) Area under Curve of 1000 bootstrapped 

ROC curves. B) R metric. C) Kendall  metric.  
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3.2 Alchemical relative free energy calculations 

Test data set – amino pyrimidine scaffolds 

The robustness of the proposed simulation and analysis protocol was first tested on a 

small dataset of amino pyrimidine derivatives for which both crystal structure data, as 

well as IC50 data from a FRET assay were available [53]. The results of the test data set 

are summarized in figure 5. Figure 5A shows the relative alchemical calculations 

carried out, needed for the computation of relative binding free energies with respect to 

a reference compound, here compound 9e. Errors on the computed ΔΔG values are 

omitted for clarity in figure 5A, but can be found in table SI1. Figure 5B shows the 

results of the experimentally obtained ΔΔGexp with respect to the computational 

results. Trends are correctly captured apart from one compound (9b). The correlation 

between the computational and experimental estimate are analysed computing the 

Pearson rank correlation coefficient R, as well as Kendall τ. A relatively good 

correlation of R=0.74±0.03 and τ= 0.79±0.04, is observed. A third measure that was 

used is the mean unsigned error (MUE) which after bootstrapping had a clear maximum 

in its distribution given by MUE = 1.2±0.1 kcal/mol. Since the test dataset gave 

reasonable confidence in the implemented protocol the same protocol and analysis 

method were employed for blind predictions of the D3R datasets.  
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Figure 5. A) Perturbation network of the test dataset. Directional arrows indicated simulations 

carried out with computed relative free energies in [kcal/mol]. Green numbers indicate average 

cycle closure errors. B) Experimental versus computational relative binding free energies with 

respect to compound 9e. Dashed line represents optimal agreement between experiments and 

computations.  

 

Set 2 – Amino pyrimidine scaffolds 

Results of the dataset defined as set 2 by the D3R competition are shown in Figure 6. 

As before, the relative free energy values shown are obtained from the average network 

taken from two independent runs and a more detailed table summarising all relative 

binding free energies including error estimates can be found in table SI2 and SI3. 

Although crystallographic water molecules found in PDB ID: 2xdx were retained during 

alchemical free energy simulations, the results submitted to the D3R challenge included 
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data in which compound 100 was set up with only two interacting crystal water 

molecules in the binding site, due to a clash with the nitrile group of the compound with 

a third crystal water molecule as shown in figure 6C and figure 6D. The clashing water 

was carelessly deleted during the challenge phase when preparing the setup. However, 

this resulted in a very poor prediction for the relative binding free energies of all 

compounds in set 2. This is illustrated in figure 6B, where the red bars represent the 

experimental results and the blue bars computed relative binding free energies based on 

calculations, where simulations starting from compound 100 were simulated with two 

waters in the binding pocket, while simulations starting from all other compounds were 

simulated with three waters in the binding site. A scatter plot of the same data can be 

found in figure SI2. The resulting sampled R value of R = -0.6±0.2 shows a negative 

correlation and a MUE = 3.3±0.2 kcal/mol, clearly indicating that the computational 

prediction does not capture experimental trends. Organizers also computed the RMS 

error as a measure of performance and found this to be 2.0 kcal/mol, ranking this result 

10
th

 out of 18 submissions. Upon further inspection, it was evident that no water 

molecule diffuses into the binding pocket during the 8 ns-per  simulations starting 

from compound 100. Effectively, this meant that compounds morphing from compound 

100 structure were lacking a potentially essential water molecule for the ligand 

stabilisation in the binding pocket. Simulations were repeated after the challenge 

deadline with three crystal waters in the binding pocket with compound 100 bound, as 

seen in figure 6D. As a result, the trend in the relative binding free energy for all 

compounds improves significantly, with an R value of R = 0.5±0.2 and a MUE = 

2.3±0.2 kcal/mol. Nevertheless, this is still a rather poor result for the overall accuracy 

of the prediction and, even though the improved results would rank the entry based on 

the R value as a top entry, it is unclear that it would classify as statistically significantly 

better than other submissions. However, these results highlight that influence of crystal 

waters in the binding pocket cannot be underestimated. While this has been shown 

elsewhere [73], and methodologies to predict water content and changes in water 

network energetics have been developed [74,75], it remains challenging to anticipate a 

priori whether changes in water structure will play a role for a given alchemical free 

energy calculation.   
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Figure 6. A) Alchemical perturbation network for set 2 with relative binding free energies 

indicated in kcal/mol. Compounds 100a is an artificially introduced intermediate. B) results of 

the computed relative binding free energies with respect to compound 100, with experimental 

results in red, and simulation results for 100 setup with 2 binding pocket waters in blue and 3 

binding pocket waters in green. Errors are shown in terms of a standard deviation and R values 

for the two crystal and three crystal water setup are indicated. C) setup with crystal water 

resulting in clash with nitrile group D) binding pocket setup of compound 100 with two crystal 

waters, by simply removing clashing water. E) setup with three waters, by manually moving the 

clashing crystal water.   

Set 3 – Benzimidazolone scaffolds 

Set 3 consists of 10 compounds and the results of the free energy predictions can be 

found in figure 7. For the case of two compounds (28 and 23) two alternative binding 

modes, shown in panels B and C of figure 7, were simulated. In each case, the binding 

mode that gave the lower relative free energy was chosen for the submission. Figure 7A 

shows the correlation between the experimental and computational predictions. The 

perturbation network for the set 3 compounds is provided shown in figure SI2 and error 
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estimates for relative calculations in table SI3. During the challenge phase not all free 

energy computations converged well with some MBAR error estimates that were much 

larger than typically seen, hinting at a sampling problem. Furthermore, it was not 

possible to reliably incorporate compound 60 into the perturbation network, due to large 

perturbations required from small intermediates as seen in the perturbation network. 

Also not all cycles gave good estimates on the cycle closure error test: for example 

including two of the cycles that involve the intermediate INT01 as seen in the 

perturbation network shown in figure SI2, with a closure error of >> 0.3 kcal/mol. With 

this information it was expected that the results would not give an excellent correlation 

with respect to the experimental values. Nonetheless a correlation of R = 0.43±0.03, τ

=0.3±0.04 and a MUE = 1.3±0.04 kcal/mol was achieved. Overall this meant a top three 

ranking with respect to all 20 submissions for this dataset in terms of R, and a best 

ranking in terms of root mean square error, which was calculated by the organisers to be 

1.43 kcal/mol. However, this result does not hold statistical scrutiny, and other top 

scoring entries fared similarly well. 

Set 1 – Benzophenone scaffolds 

Results for set 1 are summarized in figure 8. It is clear that no correlation between the 

experimental and computational data is observed, with R=-0.44±0.03, MUE=3.78±0.08 

kcal/mol, and τ=-0.55±0.09. Therefore, it was rather surprising that, despite these poor 

results, this submission was ranked in 12
th

 place out 44 submissions, according to the 

organizer computed RMS error of 2.67 kcal/mol. With the present simulation data it is 

hard to confirm the exact reason why the implemented alchemical protocol shows such 

poor performance for set 1. However, two different factors may contribute to this: first 

being the lack of available crystal structures for this data set and second its 

unsuitableness for a relative free energy calculation due to moving from a furanyl 

moiety (compound 80) to a benzyl substituent (all other compounds). To the best of our 

knowledge, no crystallographic structure has been solved for any of the compounds in 

this set, hence pose prediction was obtained purely from docking calculations.  

Moreover, the high symmetry of the compounds poses an additional difficulty, since the 

most favourable binding mode will be determined by subtitle differences in the 

accommodation of very similar hydrophobic moieties that would be hardly captured by 

docking scoring functions. Therefore, similarly to set 3, this set faced the problem of 

multiple possible binding poses for each of the compounds. Thus, each compound had 
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to be simulated using three different binding poses. The full perturbation network for set 

1 with 2D representations of the different binding poses is shown in figure SI3. In 

contrast with the previous set, the approach of choosing the binding pose that will give 

the overall most negative relative binding free energy does not yield a good correlation 

with experimental results. This observation is in line with a recent reported from Kaus 

et. al. [76]. The reason why perturbations from a five membered ring to a six membered 

ring are difficult is because they can currently only be achieved with the software 

SOMD via intermediates with neither of the rings present, such as structure INT02. 

Since two intermediates are needed, additional uncertainty in the relative free energies 

is introduced. This is especially relevant for this set since some of the paths to the 

reference compound include up to five intermediate calculations. Further analysis and 

possibly additional simulations for the dataset are desirable to establish why the 

protocol fared poorly. However, without further experimental evidence to validate the 

correctness of the predicted binding modes it is difficult to isolate errors introduced by 

the docking step and the scoring step of the competition.  
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Figure 7. A) Comparison of experimental and computed relative binding free energies for set 3. 

Compounds numbers are indicated. B) Chosen binding pose for submission C) additional 

proposed binding pose which was also simulated, for a detailed perturbation map see figure 2 of 

the SI.  
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Figure 8. Comparison of experimental relative binding free energies with respect to 

computational binding free energies for set 1 data. Compounds are indicated.  

5. Conclusions 

Accounting for receptor flexibility is still one of the unsolved challenges in docking for 

drug design. Often time tight timelines or limited computational resources prevent 

undertaking an exhaustive conformational analysis of the receptor.  When sufficient 

experimental data is available, it is possible to obtain valuable insights into protein 

flexibility by analysis of crystallographic structures. The visual inspection and 

classification of hundreds of structures, however, is a tedious and error prone task that 

can be quite time consuming. Here spectral clustering was employed to easily group 

together crystallographic structures with common features, and to aid in the 

identification of representative structures that capture most of the relevant 

conformational states of a protein binding site. Once a set of suitable structures has been 

identified, the second problem to overcome is to elucidate the binding mode of query 

compounds. The present results support the use of pharmacophoric restraints to speed 

up calculations and to yield more accurate predictions. Parsimonious use is wise since 

ill-chosen restraints will prevent docking of novel interesting scaffolds.  

On the scoring side, some of the docking protocols reported here performed well 

relative to the rest of the competition, but the absolute performance was poor. The result 

mirrors the experience of many groups and warrants further research into more accurate 
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scoring methodologies, for instance alchemical free energy calculations. In general, 

retrospective analyses are commonly used to assess the performance of binding free 

energy prediction methods. An unexpected result was the low transferability of the 

performance of the binding free energy prediction protocol from the test set to the actual 

D3R sets. Such result may highlight the sensitivity of alchemical free energy 

calculations to factors such as the number of water molecules in the binding site, or 

deviations from the correct ligand binding mode. This information can be inferred easily 

when simulations are initiated from an X-ray structure of a protein-ligand complex. 

When predictions concern novel scaffolds, correct anticipation of the most likely 

binding mode may be much harder. Consequently, future expansion of the field should 

not only focus on the development of more accurate methods for free energy 

calculation, but also deliver new approaches for reliable pose predictions that account 

for water networks and protein flexibility.  

The D3R grand challenge, together with the CSAR benchmark exercise [77–79], 

is one of the first attempts to promote blind predictions on datasets donated by the 

pharmaceutical industry. Since this situation more closely resemble the tasks faced by 

molecular modellers, blinded predictions should ideally be used more routinely to 

evaluate the performance of novel docking or scoring methodologies. However, it can 

be difficult to learn from a failure when sources of error are multiple and intricate. For 

instance, in this particular challenge it was difficult to determine whether failures in 

scoring the three compounds subsets with free energy methods was due to errors in 

binding mode predictions, or force fields employed. Another concern is the relatively 

small number of compounds present in the three subsets that were evaluated with free 

energy methods. Ideally datasets of at least 10-20 compounds spanning a few orders of 

magnitude in measured dissociation constants would be used as this would allow robust 

statistical analysis of the relevance of a prediction (i.e. it would be relatively unlikely 

that a given molecular modelling protocol would achieve good performance by chance 

if the dataset is sufficiently large). Datasets could be devised with the input of impartial 

experienced molecular modellers privy to the blinded data so the level of challenge 

posed by a given dataset may be anticipated. For instance the markedly different 

topology of compound 60 in set 3 could have been expected to pose considerable 

difficulties for a relative free energy calculation protocol. Arguably efforts are better 

spent validating initially methodologies on cases that are perceived as less challenging. 
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Ultimately molecular modelling protocols should handle robustly both docking and 

scoring aspects for reliable routine use; however there is merit in constructing datasets 

that stress-test specific methodological aspects, and incrementally validate the domain 

of applicability of a protocol. Careful design of futures challenges is a difficult but 

important task that should encourage the community to explore different source of 

molecular modelling errors in a more controlled fashion.  
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