How and why the Monte Carlo method works

Julien Michel
March 2007
Outline: Monte Carlo

- Origin of statistical mechanics
- The partition function.
- Calculation of thermodynamic properties as an ensemble average
- Numerical techniques to estimate integrals
- Direct quadrature, basic Monte Carlo integration, importance sampling
- Markov Chains, to draw from Boltzmann without knowing it
- The Metropolis algorithm
- What is meant by detailed balance. Example of moves that satisfy/break it and the consequences.
- Beyond detailed balance. Markov chains that still work and the Perron Frobenius theorem.
- References for further reading
Statistical mechanics

Ludwig Eduard Boltzmann
1844-1906

Josiah Willard Gibbs
1839-1903
Partition function and ensemble averages

\[Q_{NV T} = \frac{1}{N!} \frac{1}{\hbar^{3N}} \int \int dp^N dr^N \exp(-\beta E(p^N, r^N)) \]

\[A_{\text{obs}} = \langle A_{\text{ens}} \rangle = \frac{1}{N! \hbar^{3N}} \frac{1}{Q_{NV T}} \int \int dp^N dr^N A(p^N, r^N) \exp(-\beta E(p^N, r^N)) \]

\[\langle A_{\text{ens}} \rangle = \frac{\int dr^N A(r^N) \exp(-\beta U(r^N))}{Z_{N,VNT}} \]

\[Z_{N,VNT} = \int dr^N \exp(-\beta U(r^N)) \]
Some thermodynamic properties

\[U = - \left(\frac{\partial \ln Z}{\partial \beta} \right)_{N,V} = \langle E \rangle \]

\[P = \frac{1}{\beta} \left(\frac{\partial \ln Z}{\partial V} \right)_{N,T} = \frac{NkT}{V} + \frac{1}{3V} \left\langle \sum_{i=1}^{N} \sum_{j=i+1}^{N} r_{ij} f_{ij} \right\rangle \]

\[C_v = \left(\frac{\partial U}{\partial T} \right)_V = \frac{\langle E^2 \rangle - \langle E \rangle^2}{kT^2} \]
So how do I integrate this?

Given the very complicated nature of U in molecular simulation, it is very unlikely analytical solutions will ever be devised.

$$\langle A_{ens} \rangle = \frac{\int d r^N A(r^N) \exp(-\beta U(r^N))}{Z_{N,NVT}}$$
Numerical integration: quadrature techniques

\[\int_a^b f(x) \, dx \approx \frac{b-a}{2n} \left(f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n) \right) . \]

10 pts / dimension in 10 dimensions = 10 billion function evaluations

Too many dimensions !
MANIAC, the birth of computing and Monte Carlo

John von Neumann
1903-1957

Enrico Fermi
1901-1954

Nicholas Constantine Metropolis
1915-1999

Stanislaw Ulam
1909-1984
Scientific triumphs of MANIAC

“The nice thing about having the first computing machine is that almost anything you do on it is new and important”

Herbert L. Anderson

- Pion-Proton phase-shift analysis (Fermi, Metropolis; 1952)
- Phase-shift analysis (Bethe, deHoffman, Metropolis; 1954)
- Non linear coupled oscillators (Fermi, Pasta, Ulam; 1953)
- Genetic code (Gamow, Metropolis; 1954)
- **Equation of state: Importance Sampling** (Metropolis, Teller, 1953)
- Two-dimensional hydrodynamics (Metropolis, von Neumann; 1954)
- Universalities of iterative functions (Metropolis, Stein, Stein; 1973)
- Nuclear cascades using Monte Carlo (Metropolis, Turkevich; 1954)
- Anti-clerical chess (Wells; 1956)
- The lucky numbers (Metropolis, Ulam; 1956)
Monte Carlo rapidly outperforms quadrature techniques in higher dimensions
What is the volume of a "sphere"?

As k increases, the vast majority of the points in the k-dimension space lies outside of the sphere.

Random selection of points not efficient

Strong analogy with statistical mechanical integrals. There are few low energy states that contributes meaningfully to the integral and many high energy states (e.g. atomic overlaps) that do not contribute.
Importance sampling

• Instead of drawing random points from an uniform distribution, draw points from a distribution \(\pi \). The Monte Carlo integration equation becomes

\[
I_{\text{est}} = \frac{1}{N} \sum_{i=1}^{N} \frac{I(X_i)}{\pi(X_i)}
\]

• \(\pi \) is selected so that points are in the region of space which contributes the most to the integrand (e.g., in the sphere)

• The bias on the selection of \(X_i \) is removed when the contribution to the integrand is estimated
Importance sampling: example

\[f(x) = 3x^2 \]

\[I = \int_{0}^{1} \frac{f(x)}{\pi_k(x)} \pi_k(x) \, dx \]

\[\pi_0 = 1 \]

\[\pi_1 = 4x^3 \]

Estimate of I after drawing 100 samples with two different importance sampler

<table>
<thead>
<tr>
<th>Function</th>
<th>Average</th>
<th>Std. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_0)</td>
<td>1.027</td>
<td>0.111</td>
</tr>
<tr>
<td>(\pi_1)</td>
<td>0.999</td>
<td>0.036</td>
</tr>
</tbody>
</table>
If \(A(r^N) \) does not dominate the product in the numerator, then an ideal importance sampling function to estimate our integral is:

\[
\langle A_{ens} \rangle = \frac{\int d r^N A(r^N) \exp(-\beta U(r^N))}{Z_{N, NVT}}
\]

Problem: Impossible to draw samples from \(\pi(r^i) \) without knowing the denominator, which we can’t (as it involves solving directly a very difficult integral)
Markov Chains

- A Markov Chain is a set of probabilistic rules which governs transitions between states and is often represented as a transition matrix Π

\[
\Pi = \begin{pmatrix}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{pmatrix}
\]

- Assuming Π obeys a number of mathematical properties, then some interesting properties arise...
Properties of Markov Chains

\[\rho^{(2)} = \rho^{(1)} \Pi \]

\[\rho^{(3)} = \rho^{(2)} \Pi = \rho^{(1)} \Pi^{(2)} \]

\[\pi = \lim_{n \to \infty} \rho^{(1)} \Pi^{(n)} \]

\[\pi = \lim_{n \to \infty} \left[\rho^{(1)} \Pi^{(n-1)} \right] \Pi \]

\[\pi = \pi \Pi \]

\[\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(X_i) = \int_{R^k} f(x) \pi(x) dx \]
Markov Chains : Take home message

- Repeated application of a transition matrix Π converges any arbitrary initial distribution to a unique limiting distribution π

- Further applications let us draw samples from this distribution π

- This is achieved without ever having to know the whole distribution π!
The first application of a Markov Chain

\[
\begin{pmatrix}
0.128 & 0.872 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.128 & 0.872 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.128 & 0.872 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.432 & 0.568 \\
0.663 & 0.337
\end{pmatrix}
\]

20,000 letters!
The catch....

Given a transition matrix Π we can draw samples from its limiting distribution π

\[\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(X_i) = \int_{R_k} f(x)\pi(x)dx \]

\[\langle A_{ens} \rangle = \frac{\int dr^N A(r^N) \exp(-\beta U(r^N))}{Z_{N,NVT}} \quad \pi(r^i) = \frac{\exp(-\beta U(r^i))}{\int \exp(-\beta U(r^N))dr^N} \]

Problem 1: How do we build a transition matrix Π whose limiting distribution is the Boltzmann distribution?

Problem 2: How do we manipulate Π if there are a large number of states?
Markov Chain Monte Carlo: Metropolis Sampling

Nicholas Constantine Metropolis
1915-1999

Marshall Rosenbluth
1927-2003
and Arianna Rosenbluth

Edward Teller
1908-2003
and Augusta Teller
The Metropolis algorithm

1. Start in state I
2. Attempt a move to state j with probability a_{ij}
3. Accept this move with probability

 $$\alpha_{ij} = \frac{\pi_j}{\pi_i} = \frac{\exp(-\beta U_j) / Z_N}{\exp(-\beta U_i) / Z_N} = \exp(-\beta (U_j - U_i))$$

4. If the move is accepted, set $i = j$, otherwise $i = i$
5. Accumulate any property of interest $A(i)$
6. Return to 1 or terminate after N iterations
Detailed Balance

\[(\pi_1, \pi_2) = (\pi_1, \pi_2) \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}\]

\[(\pi_1, \pi_2) = (\pi_1 p_{11} + \pi_2 p_{21}, \pi_1 p_{12} + \pi_2 p_{22})\]

\[\pi_1 p_{12} = \pi_2 p_{21}\]

\[(\pi_1, \pi_2) = (\pi_1 (p_{11} + p_{12}), \pi_2 (p_{21} + p_{22}))\]

\[\pi_i p_{ij} = \pi_j p_{ji}\]
Detailed Balance in Metropolis

Let \(p_{ij} \) be the probability that the move \(i \) to \(j \) is accepted and note

\[
p_{ij} = a_{ij} \alpha_{ij}
\]

where

\[
\alpha_{ij} = \min(1, \frac{\pi_j}{\pi_i})
\]

if \(\pi \) is the Boltzmann distribution

\[
\frac{\pi_j}{\pi_i} = \frac{\frac{\exp(-\beta U_j)}{Z_{N,NVT}}}{\frac{\exp(-\beta U_i)}{Z_{N,NVT}}} = \frac{\exp(-\beta U_j)}{\exp(-\beta U_i)}
\]

assume \(\pi_j < \pi_i \). Then

\[
\pi_i p_{ij} = \pi_j p_{ji}
\]

\[
\pi_i a_{ij} \alpha_{ij} = \pi_j a_{ji} \alpha_{ji}
\]

\[
\pi_i \frac{\pi_j}{\pi_i} = \pi_j a_{ji}
\]

\[
\alpha_{ij} = a_{ji}
\]
A simple Monte Carlo move

\[\pi_j < \pi_i \]

\[
\pi_i p_{ij} = \pi_j p_{ji}
\]

\[
\pi_i \frac{1}{N V m} \alpha_{ij} = \pi_j \frac{1}{N V m} \alpha_{ji}
\]

\[
\pi_i \frac{1}{N V m} \frac{\pi_j}{\pi_i} = \pi_j \frac{1}{N V m} \frac{1}{\pi_j}
\]
Biased Monte Carlo Moves

\[\pi_i p_{ij} = \pi_j p_{ji} \]
\[\pi_i a_{ij} \alpha_{ij} = \pi_j a_{ji} \alpha_{ji} \]
\[\frac{\pi_j a_{ji}}{\pi_i a_{ij}} = \pi_j a_{ji} \]
A correct biased move: Preferential Sampling

\[\pi_j < \pi_i \]

\[
W_i = \frac{1}{r_{is}} \quad W'_i = \frac{W_i}{\sum_{j=1}^{N} W_j}
\]

\[
\pi_i p_{ij} = \pi_j p_{ji}
\]

\[
\pi_i W'_i \frac{dV}{V_m} \alpha_{ij} = \pi_j W'_j \frac{dV}{V_m} \alpha_{ji}
\]

\[
\pi_i W'_i \frac{dV}{V_m} \frac{\pi_j W'_j}{\pi_i W'_i} = \pi_j W'_j \frac{dV}{V_m} 1
\]
An impossible biased Move: Minimisation

This can only be true if α_{ij} is 0. e.g., if the forward move is certain and the reverse move impossible, the forward move cannot be accepted. (*)

\[\pi_i p_{ij} = \pi_j p_{ji} \]
\[\pi_i \alpha_{ij} = \pi_j \alpha_{ji} \]

However, $p_{ij} = 0$ for $j \neq i$ would not satisfy the conditions required to ensure that the Markov Chain is ergodic.
Beyond Metropolis sampling

An approximate phrasing of the Perron-Frobenius theorem: \(\Pi \) has one dominant eigenvalue \(\lambda = 1 \) and the associated eigenvector \(\mu \) is the only eigenvector whose individual values are all positive or null. The magnitude of the other eigenvalues are lower than unity.

\[
\lambda_d \mu_d = \mu_d \Pi
\]

\[
\Pi = PDP^{-1}
\]

\[
\Pi^{(n)} = (PDP^{-1})...(PDP^{-1}) = PD^{(n)}P^{-1}
\]

\[
D^{(1)} = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & \lambda_n
\end{pmatrix}
\]

\[
D^{(n)}_{n \to \infty} = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & 0
\end{pmatrix}
\]
Beyond Metropolis sampling

<table>
<thead>
<tr>
<th>Transition matrices</th>
<th>Eigenvalues</th>
<th>After 100 applications(*)</th>
</tr>
</thead>
</table>
| \[
\begin{pmatrix}
0.96 & 0.02 & 0.02 \\
0.01 & 0.97 & 0.02 \\
0.03 & 0.01 & 0.96
\end{pmatrix}
\] | 1 ; 0.95 ; 0.94 | \(\pi_{\text{est}}\) (0.62, 0.20, 0.18) |
| \[
\begin{pmatrix}
0.0 & 0.5 & 0.5 \\
0.5 & 0.0 & 0.5 \\
0.5 & 0.5 & 0.0
\end{pmatrix}
\] | 1 ; -0.50 ; -0.50 | \(\pi_{\text{est}}\) (0.25, 0.38, 0.37) |
| \[
\begin{pmatrix}
0.2 & 0.6 & 0.2 \\
0.1 & 0.2 & 0.7 \\
0.7 & 0.2 & 0.1
\end{pmatrix}
\] | 1 ; -0.25 ; -0.25 | \(\pi_{\text{est}}\) (0.37, 0.31, 0.32) |

(*) starting from \(\pi_{\text{est}} = (1, 0, 0)\)
References

• Appendix of my thesis
• Pr. Kofke lecture's notes http://www.eng.buffalo.edu/~kofke/ce530
• Evans, A.; Swartz. T “Approximating Integrals via Monte Carlo and deterministic methods” Oxford University Press, 2000, Oxford, UK